Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(27): 12793-12819, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38919053

RESUMO

Cardiovascular diseases (CDs) are the foremost cause of death worldwide. Several promising therapeutic methods have been developed for this approach, including pharmacological, surgical intervention, cell therapy, or biomaterial implantation since heart tissue is incapable of regenerating and healing on its own. The best treatment for heart failure to date is heart transplantation and invasive surgical intervention, despite their invasiveness, donor limitations, and the possibility of being rejected by the patient's immune system. To address these challenges, research is being conducted on less invasive and efficient methods. Consequently, graphene-based materials (GBMs) have attracted a great deal of interest in the last decade because of their exceptional mechanical, electrical, chemical, antibacterial, and biocompatibility properties. An overview of GBMs' applications in the cardiovascular system has been presented in this article. Following a brief explanation of graphene and its derivatives' properties, the potential of GBMs to improve and restore cardiovascular system function by using them as cardiac tissue engineering, stents, vascular bypass grafts,and heart valve has been discussed.


Assuntos
Materiais Biocompatíveis , Doenças Cardiovasculares , Grafite , Nanoestruturas , Engenharia Tecidual , Grafite/química , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/terapia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Materiais Biocompatíveis/farmacologia , Animais , Stents
2.
Int J Biol Macromol ; 262(Pt 2): 130141, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365150

RESUMO

Exosomes are among the most effective therapeutic tools for tissue engineering. This study demonstrates that a 3D composite scaffold containing exosomes can promote regeneration in rat tympanic membrane perforation (TMP). The scaffolds were characterized using scanning electron microscopy (SEM), degradation, PBS adsorption, swelling, porosity, and mechanical properties. To confirm the isolation of exosomes from human adipose-derived mesenchymal stem cells (hAMSCs), western blot, SEM, and dynamic light scattering (DLS) were performed. The Western blot test confirmed the presence of exosomal surface markers CD9, CD81, and CD63. The SEM test revealed that the isolated exosomes had a spherical shape, while the DLS test indicated an average diameter of 82.5 nm for these spherical particles. MTT assays were conducted to optimize the concentration of hAMSCs-exosomes in the hydrogel layer of the composite. Exosomes were extracted on days 3 and 7 from an alginate hydrogel containing 100 and 200 µg/mL of exosomes, with 100 µg/mL identified as the optimal value. The optimized composite scaffold demonstrated improved growth and migration of fibroblast cells. Animal studies showed complete tympanic membrane regeneration (TM) after five days. These results illustrate that a scaffold containing hAMSC-exosomes can serve as an appropriate tissue-engineered scaffold for enhancing TM regeneration.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Nanofibras , Perfuração da Membrana Timpânica , Ratos , Animais , Humanos , Gelatina , Hidrogéis , Alginatos , Alicerces Teciduais , Engenharia Tecidual/métodos
3.
Int J Biol Macromol ; 253(Pt 6): 127128, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37802440

RESUMO

In this study, we fabricated a novel multilayer polyvinyl alcohol (PVA)/alginate sulfate (ALG-S) nanofiber/decellularized Wharton's Jelly ECM (d-ECM) composite for tympanic membrane perforations (TMPs) tissue engineering (TE). Initially, electrospun PVA/ALG-S scaffolds with different blend ratios were fabricated. The influence of ALG-S ratio on surface morphology, mechanical, physical and biological properties of the nanofibers was studied. Secondly, 3-layer composites were developed as a combination of PVA/ALG-S nanofibers and d-ECM to take synergic advantages of electrospun mats and d-ECM. As part of the evaluation of the effects of d-ECM incorporation, the composite's mechanical properties, in vitro degradation, swelling ratio, and biological activities were assessed. The MTT assay showed that PVA/ALG-S nanofibers with 50:50 ratio provided a more desirable environment to support cell growth. A composite containing 25 mg/cm2 d-ECM was determined as the optimal composite through MTT assay, and this composite was used for animal studies inducing TMP regeneration. According to the in vivo studies, the optimal composite not only stimulated the healing of TMPs but also shortened the healing period. These results suggest that a multilayer nanofiber/hydrogel composite could be a potential platform for regenerating TMPs.


Assuntos
Nanofibras , Geleia de Wharton , Animais , Engenharia Tecidual/métodos , Geleia de Wharton/metabolismo , Membrana Timpânica , Alginatos/metabolismo , Sulfatos/metabolismo , Alicerces Teciduais
4.
Int J Biol Macromol ; 238: 124098, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36948341

RESUMO

Stem cell therapy is a promising strategy for cartilage tissue engineering, and cell transplantation using polymeric scaffolds has recently gained attention. Herein, we encapsulated human adipose-derived stem cells (hASCs) within the alginate sulfate hydrogel and then added them to polycaprolactone/gelatin electrospun nanofibers and extracellular matrix (ECM) powders to mimic the cartilage structure and characteristic. The composite hydrogel scaffolds were developed to evaluate the relevant factors and conditions in mechanical properties, cell proliferation, and differentiation to enhance cartilage regeneration. For this purpose, different concentrations (1-5 % w/v) of ECM powder were initially loaded within an alginate sulfate solution to optimize the best composition for encapsulated hASCs viability. Adding 4 % w/v of ECM resulted in optimal mechanical and rheological properties and better cell viability. In the next step, electrospun nanofibrous layers were added to the alginate sulfate/ECM composite to prepare different layered hydrogel-nanofiber (2, 3, and 5-layer) structures with the ability to mimic the cartilage structure and function. The 3-layer structure was selected as the optimum layered composite scaffold, considering cell viability, mechanical properties, swelling, and biodegradation behavior; moreover, the chondrogenesis potential was assessed, and the results showed promising features for cartilage tissue engineering application.


Assuntos
Nanofibras , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Nanofibras/química , Alicerces Teciduais/química , Hidrogéis/química , Alginatos/metabolismo , Sulfatos/metabolismo , Cartilagem , Matriz Extracelular/metabolismo , Células-Tronco
5.
Biotechnol Bioeng ; 120(1): 297-311, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36224726

RESUMO

Supplying sufficient oxygen within the scaffolds is one of the essential hindrances in tissue engineering that can be resolved by oxygen-generating biomaterials (OGBs). Two main issues related to OGBs are controlling oxygenation and reactive oxygen species (ROS). To address these concerns, we developed a composite scaffold entailing three layers (hydrogel-electrospun fibers-hydrogel) with antioxidant and antibacterial properties. The fibers, the middle layer, reinforced the composite structure, enhancing the mechanical strength from 4.27 ± 0.15 to 8.27 ± 0.25 kPa; also, this layer is made of calcium peroxide and silk fibroin (SF) through electrospinning, which enables oxygen delivery. The first and third layers are physical SF hydrogels to control oxygen release, containing quercetin (Q), a nonenzymatic antioxidant. This composite scaffold resulted in almost more than 40 mmHg of oxygen release for at least 13 days, and compared with similar studies is in a high range. Here, Q was used for the first time for an OGB to scavenge the possible ROS. Q delivery not only led to antioxidant activity but also stabilized oxygen release and enhanced cell viability. Based on the given results, this composite scaffold can be introduced as a safe and controllable oxygen supplier, which is promising for tissue engineering applications, particularly for bone.


Assuntos
Fibroínas , Hidrogéis , Quercetina , Alicerces Teciduais , Antioxidantes , Oxigênio , Espécies Reativas de Oxigênio , Engenharia Tecidual/métodos , Materiais Biocompatíveis , Seda
6.
Biomater Sci ; 10(24): 7015-7031, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36342181

RESUMO

Poly(glycerol sebacate) (PGS), a synthetic biorubber, is characterised by its biocompatibility, high elasticity and tunable mechanical properties; however, its inherent hydrophobicity and insolubility in water make it unsuitable for use in advanced biomaterials like hydrogels fabrication. Here, we developed new hydrophilic PGS-based copolymers that enable hydrogel formation through use of two different types of polyethylene glycol (PEG), polyethylene glycol (PEG2) or glycerol ethoxylate (PEG3), combined at different ratios. A two-step polycondensation reaction was used to produce poly(glycerol sebacate)-co-polyethylene glycol (PGS-co-PEG) copolymers that were then crosslinked thermally without the use of initiators or crosslinkers, resulting in PGS-co-PEG2 and PGS-co-PEG3 amphiphilic polymers. It has been illustrated that the properties of PGS-co-PEG copolymers can be controlled by altering the type and amount of PEG. PGS-co-PEG copolymers containing PEG ≥ 40% showed high swelling, flexibility, stretching, bioadhesion and biocompatibility, and good enzymatic degradation and mechanical properties. Also, the addition of PEG created hydrogels that demonstrated pH-responsive behaviours, which can be used for bioapplications requiring responding to physicochemical dynamics. Interestingly, PGS-co-40PEG2 and PGS-co-60PEG3 had the highest shear strengths, 340.4 ± 49.7 kPa and 336.0 ± 35.1 kPa, and these are within the range of commercially available sealants or bioglues. Due to the versatile multifunctionalities of these new copolymer hydrogels, they can have great potential in soft tissue engineering and biomedicine.


Assuntos
Glicerol , Polietilenoglicóis , Concentração de Íons de Hidrogênio
7.
Bioengineering (Basel) ; 8(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34821714

RESUMO

There is a distinct boundary between the dermis and epidermis in the human skin called the basement membrane, a dense collagen network that creates undulations of the dermal-epidermal junction (DEJ). The DEJ plays multiple roles in skin homeostasis and function, namely, enhancing the adhesion and physical interlock of the layers, creating niches for epidermal stem cells, regulating the cellular microenvironment, and providing a physical boundary layer between fibroblasts and keratinocytes. However, the primary role of the DEJ has been determined as skin integrity; there are still aspects of it that are poorly investigated. Tissue engineering (TE) has evolved promising skin regeneration strategies and already developed TE scaffolds for clinical use. However, the currently available skin TE equivalents neglect to replicate the DEJ anatomical structures. The emergent ability to produce increasingly complex scaffolds for skin TE will enable the development of closer physical and physiological mimics to natural skin; it also allows researchers to study the DEJ effect on cell function. Few studies have created patterned substrates that could mimic the human DEJ to explore their significance. Here, we first review the DEJ roles and then critically discuss the TE strategies to create the DEJ undulating structure and their effects. New approaches in this field could be instrumental for improving bioengineered skin substitutes, creating 3D engineered skin, identifying pathological mechanisms, and producing and screening drugs.

8.
ACS Chem Neurosci ; 12(20): 3795-3805, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609841

RESUMO

The occurrence of anosmia, the loss or change in sense of smell, is one of the most common symptoms of COVID-19 experienced by almost 53% of those affected. Several hypotheses explain the mechanism of anosmia in patients suffering from COVID-19. This study aims to review the related mechanisms and answer the questions regarding COVID-19-related anosmia as well as propose a new strategy for treatment of long-term anosmia as a result of COVID-19 infection. This paper covers all of the studies investigating olfactory disorders following COVID-19 infection and explains the possible reasons for the correlated anosmia, including olfactory cleft syndrome, local inflammation in the nasal epithelium, early apoptosis of olfactory cells, changes in olfactory cilia and odor transmission, damage to microglial cells, effect on olfactory bulbs, epithelial olfactory injury, and impairment of olfactory neurons and stem cells. The key questions that arise in this field have been discussed, such as why prevalent anosmia is varied among the age categories and among sexes and the correlation of anosmia with mild or severe COVID-19 infection. The angiotensin-converting enzyme 2 receptor is a significant player in the mechanism of anosmia in COVID-19 patients. Based on current studies, a novel approach to treat long-COVID-19 with ongoing anosmia has been proposed. The fields of smart drug delivery, tissue engineering, and cell therapy provide a hypothesized strategy that can minimize the side effects of current treatments and support efficient recovery of the olfactory system.


Assuntos
COVID-19 , Transtornos do Olfato , Anosmia , COVID-19/complicações , Humanos , SARS-CoV-2 , Olfato , Síndrome de COVID-19 Pós-Aguda
9.
Nanomaterials (Basel) ; 11(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922153

RESUMO

Desirable carbon allotropes such as graphene oxide (GO) have entered the field with several biomedical applications, owing to their exceptional physicochemical and biological features, including extreme strength, found to be 200 times stronger than steel; remarkable light weight; large surface-to-volume ratio; chemical stability; unparalleled thermal and electrical conductivity; and enhanced cell adhesion, proliferation, and differentiation properties. The presence of functional groups on graphene oxide (GO) enhances further interactions with other molecules. Therefore, recent studies have focused on GO-based materials (GOBMs) rather than graphene. The aim of this research was to highlight the physicochemical and biological properties of GOBMs, especially their significance to biomedical applications. The latest studies of GOBMs in biomedical applications are critically reviewed, and in vitro and preclinical studies are assessed. Furthermore, the challenges likely to be faced and prospective future potential are addressed. GOBMs, a high potential emerging material, will dominate the materials of choice in the repair and development of human organs and medical devices. There is already great interest among academics as well as in pharmaceutical and biomedical industries.

10.
Biomed Mater ; 16(2): 022004, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33594992

RESUMO

Due to their strong biomimetic potential, silk fibroin (SF) hydrogels are impressive candidates for tissue engineering, due to their tunable mechanical properties, biocompatibility, low immunotoxicity, controllable biodegradability, and a remarkable capacity for biomaterial modification and the realization of a specific molecular structure. The fundamental chemical and physical structure of SF allows its structure to be altered using various crosslinking strategies. The established crosslinking methods enable the formation of three-dimensional (3D) networks under physiological conditions. There are different chemical and physical crosslinking mechanisms available for the generation of SF hydrogels (SFHs). These methods, either chemical or physical, change the structure of SF and improve its mechanical stability, although each method has its advantages and disadvantages. While chemical crosslinking agents guarantee the mechanical strength of SFH through the generation of covalent bonds, they could cause some toxicity, and their usage is not compatible with a cell-friendly technology. On the other hand, physical crosslinking approaches have been implemented in the absence of chemical solvents by the induction of ß-sheet conformation in the SF structure. Unfortunately, it is not easy to control the shape and properties of SFHs when using this method. The current review discusses the different crosslinking mechanisms of SFH in detail, in order to support the development of engineered SFHs for biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Reagentes de Ligações Cruzadas/química , Fibroínas/química , Hidrogéis/química , Seda/metabolismo , Engenharia Tecidual/métodos , Animais , Bombyx , Dióxido de Carbono/química , Fenômenos Químicos , Cristalografia por Raios X , Glutaral/química , Humanos , Concentração de Íons de Hidrogênio , Iridoides , Teste de Materiais , Modelos Teóricos , Osmose , Polímeros/química , Estresse Mecânico , Tensoativos , Temperatura
11.
Biomedicines ; 10(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35052753

RESUMO

Peripheral nerve injury is a common medical condition that has a great impact on patient quality of life. Currently, surgical management is considered to be a gold standard first-line treatment; however, is often not successful and requires further surgical procedures. Commercially available FDA- and CE-approved decellularized nerve conduits offer considerable benefits to patients suffering from a completely transected nerve but they fail to support neural regeneration in gaps > 30 mm. To address this unmet clinical need, current research is focused on biomaterial-based therapies to regenerate dysfunctional neural tissues, specifically damaged peripheral nerve, and spinal cord. Recently, attention has been paid to the capability of graphene-based materials (GBMs) to develop bifunctional scaffolds for promoting nerve regeneration, often via supporting enhanced neural differentiation. The unique features of GBMs have been applied to fabricate an electroactive conductive surface in order to direct stem cells and improve neural proliferation and differentiation. The use of GBMs for nerve tissue engineering (NTE) is considered an emerging technology bringing hope to peripheral nerve injury repair, with some products already in preclinical stages. This review assesses the last six years of research in the field of GBMs application in NTE, focusing on the fabrication and effects of GBMs for neurogenesis in various scaffold forms, including electrospun fibres, films, hydrogels, foams, 3D printing, and bioprinting.

12.
Tissue Eng Part B Rev ; 27(6): 572-589, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33164696

RESUMO

The tympanic membrane (TM), more commonly known as the eardrum, consists of a thin layer of tissue in the human ear that receives sound vibrations from outside of the body and transmits them to the auditory ossicles. The TM perforations (TMPs) are a common ontological condition, which in some cases can result in permanent hearing loss. Despite the spontaneous healing capacity of the TM to regenerate in the majority of cases of acute perforation, chronic perforations require surgical interventions. However, the disadvantages of the surgical procedure include infection, anesthetic risks, and high failure of graft patency. The tissue engineering strategy, which includes the applications of a three-dimensional (3D) scaffold, cells, and biomolecules or a combination of them for the closure of chronic perforation, has been considered as an emerging treatment. Using this approach, emerging products are currently under development to regenerate the TM structure and its properties. This research aimed to highlight the problems with the current methods of TMP treatment, and critically evaluate the tissue engineering approaches, which may overcome these drawbacks. The focus of this review is on recent literature to critically discuss the emerging advanced materials used as a 3D scaffold in the development of a TM with cellular engineering, biomolecules, cells, and the fabrications of the TM and its pathway to the clinical application. In this review, we discuss the properties of TM and the advantages and disadvantages of the current clinical products for repair and replacement of the TM. Furthermore, we provide an overview of the in vitro and preclinical studies of emerging products over the past 5 years. The results of recent preclinical studies suggest that the tissue engineering field holds significant promise.


Assuntos
Perfuração da Membrana Timpânica , Membrana Timpânica , Humanos , Regeneração , Engenharia Tecidual , Perfuração da Membrana Timpânica/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA