Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 122: 78-89, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29197696

RESUMO

Somatic embryogenesis represents an alternative developmental process used to achieve genetic transformation and to approach key questions in maize development. It is known that embryogenic callus induction and plant regeneration are accompanied by microRNA expression changes. However, small RNA (sRNA) populations have not been explored during the proliferative callus subculture establishment and their impact on maintaining the dedifferentiated status and embryogenic potential is far from being completely understood. Here we globally tested the sRNA populations in explants (immature embryos), induced and established maize embryogenic callus from the Mexican cultivar VS-535, Tuxpeño landrace. We detected readjustments in 24 nt and 21-22 nt sRNAs during the embryogenic callus (EC) establishment and maintenance. A follow up on specific microRNAs (miRNAs) indicated that miRNAs related to stress response substantially increase upon the callus proliferation establishment, correlating with a reduction in some of their target levels. On the other hand, while 24 nt-long heterochromatic small interfering RNAs (hc-siRNAs) derived from transposable retroelements transiently decreased in abundance during the EC establishment, a population of 22 nt-hc-siRNAs increased. This was accompanied by reduction in transposon expression in the established callus subcultures. We conclude that stress- and development-related miRNAs are highly expressed upon maize EC callus induction and during maintenance of the subcultures, while miRNAs involved in hormone response only transiently increase during induction. In addition, the establishment of a proliferative status in embryogenic callus is accompanied by important readjustments in hc-siRNAs mapping to long tandem repeat (LTR) retrotransposons, and their expression regulation.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/biossíntese , Células Vegetais/metabolismo , Técnicas de Embriogênese Somática de Plantas , RNA de Plantas/biossíntese , Zea mays/metabolismo , Zea mays/citologia
2.
Front Plant Sci ; 6: 555, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257760

RESUMO

Maize somatic embryogenesis (SE) is induced from the immature zygotic embryo in darkness and under the appropriate hormones' levels. Small RNA expression is reprogrammed and certain miRNAs become particularly enriched during induction while others, characteristic to the zygotic embryo, decrease. To explore the impact of different environmental cues on miRNA regulation in maize SE, we tested specific miRNA abundance and their target gene expression in response to photoperiod and hormone depletion for two different maize cultivars (VS-535 and H-565). The expression levels of miR156, miR159, miR164, miR168, miR397, miR398, miR408, miR528, and some predicted targets (SBP23, GA-MYB, CUC2, AGO1c, LAC2, SOD9, GR1, SOD1A, PLC) were examined upon staged hormone depletion in the presence of light photoperiod or darkness. Almost all examined miRNA, except miR159, increased upon hormone depletion, regardless photoperiod absence/presence. miR528, miR408, and miR398 changed the most. On the other hand, expression of miRNA target genes was strongly regulated by the photoperiod exposure. Stress-related miRNA targets showed greater differences between cultivars than development-related targets. miRNA/target inverse relationship was more frequently observed in darkness than light. Interestingly, miR528, but not miR159, miR168 or miR398, was located on polyribosome fractions suggesting a role for this miRNA at the level of translation. Overall our results demonstrate that hormone depletion exerts a great influence on specific miRNA expression during plant regeneration independently of light. However, their targets are additionally influenced by the presence of photoperiod. The reproducibility or differences observed for particular miRNA-target regulation between two different highly embryogenic genotypes provide clues for conserved miRNA roles within the SE process.

3.
G3 (Bethesda) ; 5(9): 1805-14, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26116293

RESUMO

Marine sandy beaches represent dynamic environments often subject to harsh conditions and climate fluctuations, where natural and anthropogenic inputs of freshwater from fluvial and pluvial sources alter salinity, which has been recognized as a key variable affecting the distribution of aquatic organisms and influencing critical physiological processes. The marine arenicolous fungus Corollospora maritima is a worldwide-distributed saprobe that has been reported to present tolerance to freshwater. Here, we present a transcriptome analysis that will provide the first insight of the genomic content for this fungus and a gene expression comparison between two different salinity conditions. We also identified genes that are candidates for being differentially expressed in response to environmental variations on salinity during the fungal growth. The de novo reconstruction of C. maritima transcriptome Illumina sequencing provided a total of 14,530 transcripts (16 megabases). The comparison between the two growth conditions rendered 103 genes specifically overexpressed in seawater, and 132 genes specifically up-regulated under freshwater. Using fungal isolates collected from different beaches, the specific environmental regulation of particular transcript differential expression was confirmed by RT-qPCR. To our knowledge, this is the first analysis that explores the marine fungus C. maritima molecular responses to overcome freshwater stress, and these data could shed light to understand the fungal adaptation and plasticity mechanisms to the marine habitat.


Assuntos
Ascomicetos/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genômica , Transcriptoma , Adaptação Fisiológica/genética , Ascomicetos/classificação , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Filogenia , Reprodutibilidade dos Testes , Estresse Fisiológico/genética
4.
Mol Plant Microbe Interact ; 26(4): 461-70, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23252462

RESUMO

Translation initiation factor eIF4E exerts an important role during infection of viral species in the family Potyviridae. Particularly, a eIF(iso)4E family member is required for Arabidopsis thaliana susceptibility to Turnip mosaic virus, Lettuce mosaic virus, and Tobacco etch virus (TEV). In addition, a resistance mechanism named restriction of TEV movement (RTM) in A. thaliana controls the systemic spread of TEV in Col-0 ecotype. Here, we describe that TEV-TAMPS, a Mexican isolate, overcomes the RTM resistance mechanism reported for TEV-7DA infection of the Col-0 ecotype but depends on eIF(iso)4E for its systemic spread. To understand at which level eIF(iso)4E participates in A. thaliana TEV-TAMPS infection, the viral RNA replication and translation were measured. The absence or overexpression of eIF(iso)4E did not affect viral translation, and replication was still observed in the absence of eIF(iso)4E. However, the TEV-TAMPS systemic spread was completely abolished in the null mutant. The viral protein genome-linked (VPg) precursor NIa was found in coimmunoprecipitated complexes with both, eIF(iso)4E and eIF4E. However, the viral coat protein (CP) was only present in the eIF(iso)4E complexes. Since both the VPg and the CP proteins are needed for systemic spread, we propose a role of A. thaliana eIF(iso)4E in the movement of TEV-TAMPS within this host.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virologia , Fatores de Iniciação em Eucariotos/metabolismo , Potyvirus/patogenicidade , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Iniciação em Eucariotos/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia
5.
PLoS One ; 7(2): e31606, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363683

RESUMO

One of the most regulated steps of translation initiation is the recruitment of mRNA by the translation machinery. In eukaryotes, this step is mediated by the 5'end cap-binding factor eIF4E bound to the bridge protein eIF4G and forming the eIF4F complex. In plants, different isoforms of eIF4E and eIF4G form the antigenically distinct eIF4F and eIF(iso)4F complexes proposed to mediate selective translation. Using a microarray analysis of polyribosome- and non-polyribosome-purified mRNAs from 15 day-old Arabidopsis thaliana wild type [WT] and eIF(iso)4E knockout mutant [(iso)4E-1] seedlings we found 79 transcripts shifted from polyribosomes toward non-polyribosomes, and 47 mRNAs with the opposite behavior in the knockout mutant. The translationally decreased mRNAs were overrepresented in root-preferentially expressed genes and proteins from the endomembrane system, including several transporters such as the phosphate transporter PHOSPHATE1 (PHO1), Sucrose transporter 3 (SUC3), ABC transporter-like with ATPase activity (MRP11) and five electron transporters, as well as signal transduction-, protein modification- and transcription-related proteins. Under normal growth conditions, eIF(iso)4E expression under the constitutive promoter 35 S enhanced the polyribosomal recruitment of PHO1 supporting its translational preference for eIF(iso)4E. Furthermore, under phosphate deficiency, the PHO1 protein increased in the eIF(iso)4E overexpressing plants and decreased in the knockout mutant as compared to wild type. In addition, the knockout mutant had larger root, whereas the 35 S directed expression of eIF(iso)4E caused shorter root under normal growth conditions, but not under phosphate deficiency. These results indicate that selective translation mediated by eIF(iso)4E is relevant for Arabidopsis root development under normal growth conditions.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas/genética , Plântula/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Western Blotting , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas Mutantes/metabolismo , Mutação/genética , Fatores de Iniciação de Peptídeos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Polirribossomos/metabolismo , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo , Regiões não Traduzidas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA