Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34960336

RESUMO

Voxel-based data structures, algorithms, frameworks, and interfaces have been used in computer graphics and many other applications for decades. There is a general necessity to seek adequate digital representations, such as voxels, that would secure unified data structures, multi-resolution options, robust validation procedures and flexible algorithms for different 3D tasks. In this review, we evaluate the most common properties and algorithms for voxelisation of 2D and 3D objects. Thus, many voxelisation algorithms and their characteristics are presented targeting points, lines, triangles, surfaces and solids as geometric primitives. For lines, we identify three groups of algorithms, where the first two achieve different voxelisation connectivity, while the third one presents voxelisation of curves. We can say that surface voxelisation is a more desired voxelisation type compared to solid voxelisation, as it can be achieved faster and requires less memory if voxels are stored in a sparse way. At the same time, we evaluate in the paper the available voxel data structures. We split all data structures into static and dynamic grids considering the frequency to update a data structure. Static grids are dominated by SVO-based data structures focusing on memory footprint reduction and attributes preservation, where SVDAG and SSVDAG are the most advanced methods. The state-of-the-art dynamic voxel data structure is NanoVDB which is superior to the rest in terms of speed as well as support for out-of-core processing and data management, which is the key to handling large dynamically changing scenes. Overall, we can say that this is the first review evaluating the available voxelisation algorithms for different geometric primitives as well as voxel data structures.


Assuntos
Algoritmos , Gráficos por Computador , Imageamento Tridimensional
2.
Opt Express ; 29(1): 158-169, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33362106

RESUMO

Light field cameras capture spatial and angular information simultaneously. A scene point in the 3D space appears many times on the raw image, bringing challenges to light field camera calibration. This paper proposes a novel calibration method for standard plenoptic cameras by using corner features from raw images. We select appropriate micro-lens images on raw images and detect corner features on them. During calibration, we first build the relationship of corner features and points in object space by using a few intrinsic parameters and then perform a linear calculation of these parameters, which are further refined via a non-linear optimization. Experiments on Lytro and Lytro Illum cameras demonstrate that the accuracy and efficiency of the proposed method are superior to the state-of-the-art methods based on features of raw images.

3.
Sensors (Basel) ; 19(21)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671626

RESUMO

Machine learning algorithms can be well suited to LiDAR point cloud classification, but when they are applied to the point cloud classification of power facilities, many problems such as a large number of computational features and low computational efficiency can be encountered. To solve these problems, this paper proposes the use of the Adaboost algorithm and different topological constraints. For different objects, the top five features with the best discrimination are selected and combined into a strong classifier by the Adaboost algorithm, where coarse classification is performed. For power transmission lines, the optimum scales are selected automatically, and the coarse classification results are refined. For power towers, it is difficult to distinguish the tower from vegetation points by only using spatial features due to the similarity of their proposed key features. Therefore, the topological relationship between the power line and power tower is introduced to distinguish the power tower from vegetation points. The experimental results show that the classification of power transmission lines and power towers by our method can achieve the accuracy of manual classification results and even be more efficient.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA