Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Landsc Urban Plan ; 200: 103837, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32341614

RESUMO

Urban ecosystem service (UES) is becoming an influential concept to guide the planning, design, and management of urban landscapes towards urban sustainability. However, its use is hindered by definitional ambiguity, and the conceptual bases underpinning its application remain weak. This is exemplified by two different but equally valid interpretations of UES: "urban ecosystem services", referring to ecosystem services from analogs of natural and semi-natural ecosystems within urban boundaries, and "urban ecosystem services", a much broader term that includes the former group as well as urban services in a city. While we recognize that a single definition of UES is not possible nor necessary as its application is context-dependent, it is nevertheless useful to clarify the relationships between these interpretations to promote consistent use, and importantly, explore how a broader interpretation of UES might advance its applications in areas that have been neglected. We developed a conceptual framework that links UES to natural and human-derived capital to explain the relationships between the dual meanings of UES and proposed three normative propositions to guide its application: (1) integrate holistically multiple components of natural capital to provide UES, (2) reduce dependence on non-renewable abiotic resources and human-derived capital, and (3) enhance UES through technology. The framework we developed helps to resolve the current ambiguity in the meanings of UES, highlights the need to recognise neglected aspects of natural capital important for UES, and can be used to clarify relationships with related concepts conveying dependence of human well-being on nature.

2.
Ecol Evol ; 9(8): 4504-4517, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31031923

RESUMO

In dendritic river systems, gene flow is expected to occur primarily within watersheds. Yet, rare cross-watershed transfers can also occur, whether mediated by (often historical) geological events or (often contemporary) human activities. We explored these events and their potential evolutionary consequences by analyzing patterns of neutral genetic variation (microsatellites) and adaptive phenotypic variation (male color) in wild guppies (Poecilia reticulata) distributed across two watersheds in northern Trinidad. We found the expected signatures of within-watershed gene flow; yet we also inferred at least two instances of cross-watershed gene flow-one in the upstream reaches and one further downstream. The upstream cross-watershed event appears to be very recent (41 ± 13 years), suggesting dispersal via recent flooding or undocumented human-mediated transport. The downstream cross-watershed event appears to be considerably older (577 ± 265 years), suggesting a role for rare geological or climatological events. Alongside these strong signatures of both contemporary and historical gene flow, we found little evidence of impacts on presumably adaptive phenotypic differentiation, except perhaps in the one instance of very recent cross-watershed gene flow. Selection in this system seems to overpower gene flow-at least on the spatiotemporal scales investigated here.

4.
PLoS One ; 12(12): e0188564, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29261694

RESUMO

Coastal ecosystems and the livelihoods they support are threatened by stressors acting at global and local scales. Here we used the data produced by the Caribbean Coastal Marine Productivity program (CARICOMP), the longest, largest monitoring program in the wider Caribbean, to evidence local-scale (decreases in water quality) and global-scale (increases in temperature) stressors across the basin. Trend analyses showed that visibility decreased at 42% of the stations, indicating that local-scale chronic stressors are widespread. On the other hand, only 18% of the stations showed increases in water temperature that would be expected from global warming, partially reflecting the limits in detecting trends due to inherent natural variability of temperature data. Decreases in visibility were associated with increased human density. However, this link can be decoupled by environmental factors, with conditions that increase the flush of water, dampening the effects of human influence. Besides documenting environmental stressors throughout the basin, our results can be used to inform future monitoring programs, if the desire is to identify stations that provide early warning signals of anthropogenic impacts. All CARICOMP environmental data are now available, providing an invaluable baseline that can be used to strengthen research, conservation, and management of coastal ecosystems in the Caribbean basin.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Estresse Fisiológico , Região do Caribe , Conservação dos Recursos Naturais , Conjuntos de Dados como Assunto , Humanos , Salinidade , Água do Mar , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA