Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0282586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36893122

RESUMO

A new semisynthetic derivative of the natural alkaloid, theobromine, has been designed as a lead antiangiogenic compound targeting the EGFR protein. The designed compound is an (m-tolyl)acetamide theobromine derivative, (T-1-MTA). Molecular Docking studies have shown a great potential for T-1-MTA to bind to EGFR. MD studies (100 ns) verified the proposed binding. By MM-GBSA analysis, the exact binding with optimal energy of T-1-MTA was also identified. Then, DFT calculations were performed to identify the stability, reactivity, electrostatic potential, and total electron density of T-1-MTA. Furthermore, ADMET analysis indicated the T-1-MTA's general likeness and safety. Accordingly, T-1-MTA has been synthesized to be examined in vitro. Intriguingly, T-1-MTA inhibited the EGFR protein with an IC50 value of 22.89 nM and demonstrated cytotoxic activities against the two cancer cell lines, A549, and HCT-116, with IC50 values of 22.49, and 24.97 µM, respectively. Interestingly, T-1-MTA's IC50 against the normal cell lines, WI-38, was very high (55.14 µM) indicating high selectivity degrees of 2.4 and 2.2, respectively. Furthermore, the flow cytometry analysis of A549 treated with T-1-MTA showed significantly increased ratios of early apoptosis (from 0.07% to 21.24%) as well as late apoptosis (from 0.73% to 37.97%).


Assuntos
Antineoplásicos , Teobromina , Teobromina/farmacologia , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Descoberta de Drogas , Receptores ErbB/metabolismo , Relação Estrutura-Atividade , Proliferação de Células , Inibidores de Proteínas Quinases/química
2.
Life (Basel) ; 12(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36143445

RESUMO

As an extension of our research against COVID-19, a multiphase in silico approach was applied in the selection of the three most common inhibitors (Glycyrrhizoflavone (76), Arctigenin (94), and Thiangazole (298)) against papain-like protease, PLpro (PDB ID: 4OW0), among 310 metabolites of natural origin. All compounds of the exam set were reported as antivirals. The structural similarity between the examined compound set and S88, the co-crystallized ligand of PLpro, was examined through structural similarity and fingerprint studies. The two experiments pointed to Brevicollin (28), Cryptopleurine (41), Columbamine (46), Palmatine (47), Glycyrrhizoflavone (76), Licochalcone A (87), Arctigenin (94), Termilignan (98), Anolignan B (99), 4,5-dihydroxy-6″-deoxybromotopsentin (192), Dercitin (193), Tryptanthrin (200), 6-Cyano-5-methoxy-12-methylindolo [2, 3A] carbazole (211), Thiangazole (298), and Phenoxan (300). The binding ability against PLpro was screened through molecular docking, disclosing the favorable binding modes of six metabolites. ADMET studies expected molecules 28, 76, 94, 200, and 298 as the most favorable metabolites. Then, molecules 76, 94, and 298 were chosen through in silico toxicity studies. Finally, DFT studies were carried out on glycyrrhizoflavone (76) and indicated a high level of similarity in the molecular orbital analysis. The obtained data can be used in further in vitro and in vivo studies to examine and confirm the inhibitory effect of the filtered metabolites against PLpro and SARS-CoV-2.

3.
PLoS One ; 17(9): e0272362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36149902

RESUMO

We report herein, the design and synthesis of thiazolidine-2,4-diones derivatives as new inhibitors for VEGFR-2. The designed members were assessed for their in vitro anticancer activity against four cancer cell lines; A549, Caco-2, HepG-2 and MDA-MB-231. Compound 14a showed the most potent effects against Caco-2, and HepG-2 cell lines (IC50 = of 1.5 and 31.5 µM, respectively). Next, the in vitro VEGFR-2 inhibitory activity, safety profiles and selectivity indices were examined for all the synthesized members against the normal Vero cell line. Compound 14a (the safest member against Caco-2 cell line) was further investigated for its ability to inhibit Caco-2 cells migration and healing. Moreover, the apoptotic induction of compound 14a against Caco-2 cell line was investigated by assessing against four apoptotic genes (Bcl2, Bcl-xl, TGF, and Survivin). The results revealed that compound 14a can exert apoptosis through significant reduction of Bcl2, Survivin, and TGF gene expression levels. Finally, deep computational studies including molecular docking, ADMET, toxicity studies, and MD simulation were carried out. Also, the DFT calculations were performed and discussed, and the results confirmed the inhibitory reactivity of 14a against VEGFR-2. Compound 14a is expected to be used as a potential lead in the development of new VEGFR-2 inhibitors with increased potency.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/farmacologia , Apoptose , Células CACO-2 , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Survivina/metabolismo , Tiazolidinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
J Enzyme Inhib Med Chem ; 37(1): 1903-1917, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35801403

RESUMO

A thiazolidine-2,4-dione nucleus was molecularly hybridised with the effective antitumor moieties; 2-oxo-1,2-dihydroquinoline and 2-oxoindoline to obtain new hybrids with potential activity against VEGFR-2. The cytotoxic effects of the synthesised derivatives against Caco-2, HepG-2, and MDA-MB-231 cell lines were investigated. Compound 12a was found to be the most potent candidate against the investigated cell lines with IC50 values of 2, 10, and 40 µM, respectively. Furthermore, the synthesised derivatives were tested in vitro for their VEGFR-2 inhibitory activity showing strong inhibition. Moreover, an in vitro viability study against Vero non-cancerous cell line was investigated and the results reflected a high safety profile of all tested compounds. Compound 12a was further investigated for its apoptotic behaviour by assessing the gene expression of four genes (Bcl2, Bcl-xl, TGF, and Survivin). Molecular dynamic simulations authenticated the high affinity, accurate binding, and perfect dynamics of compound 12a against VEGFR-2.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/química , Células CACO-2 , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxindóis , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Tiazolidinas/farmacologia
5.
Arch Pharm (Weinheim) ; 355(10): e2200133, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35822666

RESUMO

In continuation of our previous efforts in the field of design and synthesis of vascular endothelial growth factor receptor (VEGFR)-2 inhibitors, a new series of [1,2,4]triazolo[4,3-c]quinazoline derivatives were designed and synthesized as modified analogs of some reported VEGFR-2 inhibitors. The synthesized compounds were designed to have the essential pharmacophoric features of VEGFR-2 inhibitors. Antiproliferative activities of the synthesized compounds were investigated against two tumor cell lines (HepG2 and HCT-116) using sorafenib as a positive control. Compound 10k emerged as the most promising antiproliferative agent with IC50 values of 4.88 and 5.21 µM against HepG2 and HCT-116 cells, respectively. Also, it showed the highest inhibitory activity against VEGFR-2 with an IC50 value of 53.81 nM compared to sorafenib (IC50 = 44.34 nM). Cell cycle analysis revealed that compound 10k can arrest HepG2 cells at both the S and G2/M phases. In addition, this compound produced a tenfold increase in apoptotic cells compared to the control. Furthermore, the effect of compound 10k on the expression level of BAX, Bcl-2, and caspase-3 was assessed. This compound caused a 3.35-fold increase in BAX expression levels and a 1.25-fold reduction in Bcl-2 expression levels. The BAX/Bcl-2 ratio was calculated to be 4.57, indicating a promising apoptotic effect. It also showed a significant increase in the level of caspase-3 (4.12-fold) compared to the control cells. In silico docking, absorption, distribution, metabolism, excretion, and toxicity, and toxicity studies were performed for the synthesized compounds to investigate their binding patterns against the proposed biological target (VEGFR-2) and to assess the drug-likeness characters.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Apoptose , Caspase 3/metabolismo , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases , Quinazolinas/farmacologia , Sorafenibe/farmacologia , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proteína X Associada a bcl-2/farmacologia
6.
Bioorg Chem ; 123: 105770, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35395446

RESUMO

Guided by the pharmacophoric features of both EGFR and VEGFR-2 antagonists, two novel series of 4-methoxyphenyl pyrazole and pyrimidine derivatives [(4a-c) and (5a-c, 6, 7a-c, 8, 9, 10, 11a,c, 12, 13a-c, 14a-c, and 15a,b)], respectively, were designed and synthesized as dual EGFR/VEGFR-2 inhibitors. Interestingly, compound 12 showed very strong antiproliferative effects towards all the five studied cell lines (HepG-2, MCF-7, MDA-231, HCT-116, and Caco-2) with IC50 values of 3.74, 7.81, 4.85, 2.96, and 9.27 µM, respectively. Also, it achieved the highest inhibitory activities against both EGFR and VEGFR-2 as well (IC50 = 0.071 and 0.098 µM) compared to the two reference drugs, erlotinib (IC50 = 0.063 µM) and sorafenib (IC50 = 0.041 µM), respectively. Moreover, four compounds (4a, 7a, 7c, and 12) were selected for further evaluation through cell cycle analysis and Annexin V-based flow cytometry assay in the HepG-2 cell line. In addition, deep computational studies including molecular docking, physicochemical properties, profiling pharmacokinetics, ADMET studies, and toxicity predictions were performed for the designed compounds to evaluate the prospective drug candidates. Finally, analyzing the structure-activity relationship (SAR) of the new derivatives gives us a lot of interesting promising results which could help medicinal chemists to design more potent drug candidates soon as well.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/química , Células CACO-2 , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases , Pirazóis/química , Pirimidinas/química , Relação Estrutura-Atividade
7.
Molecules ; 27(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35408684

RESUMO

As a continuation of our earlier work against SARS-CoV-2, seven FDA-approved drugs were designated as the best SARS-CoV-2 nsp16-nsp10 2'-o-methyltransferase (2'OMTase) inhibitors through 3009 compounds. The in silico inhibitory potential of the examined compounds against SARS-CoV-2 nsp16-nsp10 2'-o-methyltransferase (PDB ID: (6W4H) was conducted through a multi-step screening approach. At the beginning, molecular fingerprints experiment with SAM (S-Adenosylmethionine), the co-crystallized ligand of the targeted enzyme, unveiled the resemblance of 147 drugs. Then, a structural similarity experiment recommended 26 compounds. Therefore, the 26 compounds were docked against 2'OMTase to reveal the potential inhibitory effect of seven promising compounds (Protirelin, (1187), Calcium folinate (1913), Raltegravir (1995), Regadenoson (2176), Ertapenem (2396), Methylergometrine (2532), and Thiamine pyrophosphate hydrochloride (2612)). Out of the docked ligands, Ertapenem (2396) showed an ideal binding mode like that of the co-crystallized ligand (SAM). It occupied all sub-pockets of the active site and bound the crucial amino acids. Accordingly, some MD simulation experiments (RMSD, RMSF, Rg, SASA, and H-bonding) have been conducted for the 2'OMTase-Ertapenem complex over 100 ns. The performed MD experiments verified the correct binding mode of Ertapenem against 2'OMTase exhibiting low energy and optimal dynamics. Finally, MM-PBSA studies indicated that Ertapenem bonded advantageously to the targeted protein with a free energy value of -43 KJ/mol. Furthermore, the binding free energy analysis revealed the essential amino acids of 2'OMTase that served positively to the binding. The achieved results bring hope to find a treatment for COVID-19 via in vitro and in vivo studies for the pointed compounds.


Assuntos
Metiltransferases , SARS-CoV-2 , Proteínas não Estruturais Virais , Proteínas Virais Reguladoras e Acessórias , Ertapenem/farmacologia , Ligantes , Metiltransferases/antagonistas & inibidores , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , S-Adenosilmetionina/química , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/antagonistas & inibidores
8.
J Enzyme Inhib Med Chem ; 37(1): 1098-1119, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35430934

RESUMO

Herein, a series of N'-benzylidene-3,4-dimethoxybenzohydrazide derivatives were designed and synthesised to target the multidrug efflux pump (MATE). The antibacterial activities were screened against S. aureus, Acinetobacter, S. typhi, E. coli, and P. aeruginosa, whereas their antifungal activities were screened against C. albicans. Compounds 4a, 4h, and 4i showed the most promising antibacterial and antifungal activities. Moreover, compounds 4h and 4i being the broader and superior members regarding their antimicrobial effects were selected to be further evaluated via in vivo testing using biochemical analysis and liver/kidney histological examination. Additionally, molecular docking was carried out to attain further deep insights into the synthesised compounds' binding modes. Also, ADMET studies were performed to investigate the physicochemical/pharmacokinetics features and toxicity parameters of the synthesised derivatives. Finally, a structure-antimicrobial activity relationship study was established to facilitate further structural modifications in the future. HighlightsA series of new N'-benzylidene-3,4-dimethoxybenzohydrazide derivatives were designed and synthesised targeting the multidrug efflux pump (MATE) guided by the pharmacophoric features of the co-crystallized native inhibitor of the target protein.The newly synthesised compounds were assessed through in vitro, in vivo, and in silico approaches.Using the agar well diffusion assay, the antibacterial activities of the synthesised compounds were screened against S. aureus, Acinetobacter, S. typhi, E. coli, and P. aeruginosa, whereas, their antifungal activities were screened against C. albicans.The minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) of the synthesised compounds were investigated on variable microbial species.Compounds (4h and 4i) -as the broader and superior members regarding their antimicrobial effects- were further evaluated via in vivo testing using bio-chemical analysis and liver/kidney histological examination.A molecular docking study and ADMET in silico studies were performed.A structure-antimicrobial activity relationship study was established to facilitate further structural modifications in the future.


Assuntos
Anti-Infecciosos , Staphylococcus aureus , Antibacterianos/química , Anti-Infecciosos/farmacologia , Antifúngicos/química , Candida albicans , Escherichia coli , Ligantes , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Pseudomonas aeruginosa , Relação Estrutura-Atividade
9.
Arch Pharm (Weinheim) ; 355(6): e2100506, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35293628

RESUMO

Thirteen novel [1,2,4]triazolo[4,3-c]quinazoline derivatives as DNA intercalators were synthesized and their anticancer activities evaluated against HepG2 and HCT-116 cells. A docking study was carried out to explore how the new derivatives bind to active sites of DNA. The docking data were highly interrelated with that of biological testing. The HCT-116 cell line was the most sensitive one to the effect of the new derivatives. Compound 7c exhibited the highest anticancer activities against both the HepG2 and HCT116 cancer cell lines. Despite this compound displaying less activity than doxorubicin, it could be useful as a template for future manipulation, optimization, and investigation to produce other analogs with potential activity. The most active derivatives, 7c , 7b , and 7a were evaluated as DNA binders. Compound 7c displayed the highest binding affinity. Furthermore, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile was calculated for the four most active compounds in comparison to doxorubicin as reference drug. Our derivatives 7a , 7b , and 7c displayed a very good calculated ADMET profile in comparison to doxorubicin.


Assuntos
Desenho de Fármacos , Substâncias Intercalantes , Proliferação de Células , DNA/química , Doxorrubicina/farmacologia , Humanos , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinazolinas/farmacologia , Relação Estrutura-Atividade , Triazóis
10.
Arch Pharm (Weinheim) ; 355(5): e2100487, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35194810

RESUMO

Novel triazoloquinazolines were designed and synthesized and evaluated as anticancer agents against HepG2 and HCT-116 cells. The biological testing data corresponded well to those of the molecular docking studies. The HCT-116 cell line was most affected due to the actions of our derivatives. Derivative 7a was the most potent one against both HepG2 and HCT116 cells, with IC50 = 7.98 and 5.57 µM, respectively. This compound showed anticancer activity that was nearly equipotent to that of doxorubicin against HepG2 cells, but higher than that of doxorubicin against HCT116 cells (IC50 = 7.94 and 8.07 µM, respectively). Compounds 8, 7b , and 6f showed excellent anticancer activities against both the HCT116 and HepG2 cell lines. The highly active compounds 6f , 7a , 7b , and 8 were evaluated for their DNA-binding activities. Compounds 7a and 8 showed the highest binding activities. These derivatives potently intercalate in DNA, at IC50 values of 42.90 and 48.13 µM, respectively. Derivatives 6f and 7b showed good DNA-binding activities, with IC50 values of 54.24 and 50.56 µM, respectively. Furthermore, in silico calculated ADMET profiles were established for our four highly active derivatives, in comparison to doxorubicin. Our derivatives 6f , 7a , 7b , and 8 showed a very good ADMET profile. Compounds 6f , 7a , 7b , and 8 follow Lipinski's rules, while doxorubicin violates three of these rules.


Assuntos
Antineoplásicos , Substâncias Intercalantes , Linhagem Celular Tumoral , Proliferação de Células , DNA/química , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinazolinas , Relação Estrutura-Atividade , Triazóis
11.
Arch Pharm (Weinheim) ; 355(4): e2100412, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35014084

RESUMO

Eleven novel [1,2,4]triazolo[4,3-c]quinazolines were designed, synthesized, and evaluated against HepG2 and HCT-116 cells. The molecular design was performed to investigate the binding mode of the proposed compounds with the DNA active site. The data obtained from biological testing highly correlated with that obtained from molecular modeling. HCT-116 was found to be the most sensitive cell line to the influence of the new derivatives. In particular, compounds 6f and 6e were found to be the most potent derivatives over all the tested compounds against the two HepG2 and HCT116 cancer cell lines, with IC50 = 23.44 ± 2.9, 12.63 ± 1.2, and 25.80 ± 2.1, and 14.32 ± 1.5 µM, respectively. Although compounds 6f and 6e displayed less activity than doxorubicin (IC50 = 7.94 ± 0.6 and 8.07 ± 0.8 µM, respectively), both could be useful as a template for future design, optimization, and investigation to produce more potent anticancer analogs. The most active derivatives 6a , 6c , 6e , and 6f were evaluated for their DNA-binding activities. Compound 6f displayed the highest binding affinity. This compound potently intercalates DNA at a decreased IC50 value (54.08 µM). Compounds 6a , 6c , and 6e exhibited good DNA-binding affinities, with IC50 values of 79.35, 84.08, and 59.35 µM, respectively. Furthermore, ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiles were calculated for the four most active compounds in comparison to doxorubicin as a reference drug. Our derivatives 6a , 6c , 6e , and 6f displayed very good in-silico-predicted ADMET profiles. Doxorubicin violates three of Lipinski's rules, our derivatives 6a , 6c , 6e , and 6f do not violate any rule.


Assuntos
Antineoplásicos , Quinazolinas , Proliferação de Células , DNA/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinazolinas/farmacologia , Relação Estrutura-Atividade
12.
J Enzyme Inhib Med Chem ; 37(1): 573-591, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35012403

RESUMO

Based on quinazoline, quinoxaline, and nitrobenzene scaffolds and on pharmacophoric features of VEGFR-2 inhibitors, 17 novel compounds were designed and synthesised. VEGFR-2 IC50 values ranged from 60.00 to 123.85 nM for the new derivatives compared to 54.00 nM for sorafenib. Compounds 15a, 15b, and 15d showed IC50 from 17.39 to 47.10 µM against human cancer cell lines; hepatocellular carcinoma (HepG2), prostate cancer (PC3), and breast cancer (MCF-7). Meanwhile, the first in terms of VEGFR-2 inhibition was compound 15d which came second with regard to antitumor assay with IC50 = 24.10, 40.90, and 33.40 µM against aforementioned cell lines, respectively. Furthermore, Compound 15d increased apoptosis rate of HepG2 from 1.20 to 12.46% as it significantly increased levels of Caspase-3, BAX, and P53 from 49.6274, 40.62, and 42.84 to 561.427, 395.04, and 415.027 pg/mL, respectively. Moreover, 15d showed IC50 of 253 and 381 nM against HER2 and FGFR, respectively.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Nitrobenzenos/síntese química , Nitrobenzenos/química , Nitrobenzenos/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/síntese química , Quinazolinas/química , Quinazolinas/farmacologia , Quinoxalinas/síntese química , Quinoxalinas/química , Quinoxalinas/farmacologia , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
Molecules ; 26(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34771004

RESUMO

Papain-like protease is an essential enzyme in the proteolytic processing required for the replication of SARS-CoV-2. Accordingly, such an enzyme is an important target for the development of anti-SARS-CoV-2 agents which may reduce the mortality associated with outbreaks of SARS-CoV-2. A set of 69 semi-synthesized molecules that exhibited the structural features of SARS-CoV-2 papain-like protease inhibitors (PLPI) were docked against the coronavirus papain-like protease (PLpro) enzyme (PDB ID: (4OW0). Docking studies showed that derivatives 34 and 58 were better than the co-crystallized ligand while derivatives 17, 28, 31, 40, 41, 43, 47, 54, and 65 exhibited good binding modes and binding free energies. The pharmacokinetic profiling study was conducted according to the four principles of the Lipinski rules and excluded derivative 31. Furthermore, ADMET and toxicity studies showed that derivatives 28, 34, and 47 have the potential to be drugs and have been demonstrated as safe when assessed via seven toxicity models. Finally, comparing the molecular orbital energies and the molecular electrostatic potential maps of 28, 34, and 47 against the co-crystallized ligand in a DFT study indicated that 28 is the most promising candidate to interact with the target receptor (PLpro).


Assuntos
Proteases Semelhantes à Papaína de Coronavírus/metabolismo , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , COVID-19/metabolismo , Simulação por Computador , Proteases Semelhantes à Papaína de Coronavírus/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Tratamento Farmacológico da COVID-19
14.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068579

RESUMO

The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the "COVID-19" disease that has been declared by WHO as a global emergency. The pandemic, which emerged in China and widespread all over the world, has no specific treatment till now. The reported antiviral activities of isoflavonoids encouraged us to find out its in silico anti-SARS-CoV-2 activity. In this work, molecular docking studies were carried out to investigate the interaction of fifty-nine isoflavonoids against hACE2 and viral Mpro. Several other in silico studies including physicochemical properties, ADMET and toxicity have been preceded. The results revealed that the examined isoflavonoids bound perfectly the hACE-2 with free binding energies ranging from -24.02 to -39.33 kcal mol-1, compared to the co-crystallized ligand (-21.39 kcal mol-1). Furthermore, such compounds bound the Mpro with unique binding modes showing free binding energies ranging from -32.19 to -50.79 kcal mol-1, comparing to the co-crystallized ligand (binding energy = -62.84 kcal mol-1). Compounds 33 and 56 showed the most acceptable affinities against hACE2. Compounds 30 and 53 showed the best docking results against Mpro. In silico ADMET studies suggest that most compounds possess drug-likeness properties.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/química , Sistemas de Liberação de Medicamentos , Isoflavonas/química , Simulação de Acoplamento Molecular , Enzima de Conversão de Angiotensina 2/metabolismo , Proteases 3C de Coronavírus/metabolismo , Humanos , Isoflavonas/uso terapêutico
15.
Arch Pharm (Weinheim) ; 354(3): e2000237, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33226150

RESUMO

A new series of 1,2,4-triazolo[4,3-c]quinazoline derivatives was designed and synthesized as Topo II inhibitors and DNA intercalators. The cytotoxic effect of the new members was evaluated in vitro against a group of cancer cell lines including HCT-116, HepG-2, and MCF-7. Compounds 14c , 14d , 14e , 14e , 15b , 18b , 18c , and 19b exhibited the highest activities with IC50 values ranging from 5.22 to 24.24 µM. Furthermore, Topo II inhibitory activities and DNA intercalating affinities of the most promising candidates were evaluated as a possible mechanism for the antiproliferative effect. The results of the Topo II inhibition and DNA binding tests were coherent with that of in vitro cytotoxicity. Additionally, the most promising compound 18c was analyzed in HepG-2 cells for its apoptotic effect and cell cycle arrest. It was found that 18c can induce apoptosis and arrest the cell cycle at the G2-M phase. Finally, molecular docking studies were carried out for the designed compounds against the crystal structure of the DNA-Topo II complex as a potential target to explore their binding modes. On the basis of these studies, it was hypothesized that the DNA binding and/or Topo II inhibition would participate in the noted cytotoxicity of the synthesized compounds.


Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , DNA de Neoplasias/efeitos dos fármacos , Descoberta de Drogas , Quinazolinonas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinazolinonas/síntese química , Quinazolinonas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Triazóis/síntese química , Triazóis/química , Células Tumorais Cultivadas
16.
Bioorg Med Chem ; 25(17): 4723-4744, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28720328

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) and sulfonylurea receptor (SUR) play crucial roles in management of type-2 diabetes mellitus. In this study, a series of novel quinazoline-4(3H)-one-sulfonylurea hybrids were designed and synthesized as dual PPARγ and SUR agonists. The synthesized compounds were evaluated for their in vivo anti-hyperglycemic activities against STZ-induced hyperglycemic rats. Four compounds (19a, 19d, 19f and 25g) demonstrated potent activities with reduction in blood glucose levels of 40.43, 46.42, 41.23 and 42.50 %, respectively. The most active ten compounds were further evaluated in vitro for their PPARγ binding affinities and insulin-secreting abilities. Compounds 19b, 19d, 19f, 25f and 25g exhibited the highest affinities against PPARγ with IC50 values of 0.371, 0.350, 0.369, 0.408 and 0.353µM, respectively. In addition, compounds 19d, 19f, and 25d showed the highest insulin-secreting activities with EC50 values of 0.97, 1.01 and 1.15µM, respectively. Furthermore, molecular docking and pharmacophore generation techniques were carried out to investigate binding patterns and fit values of the designed compounds with PPARγ and SUR, respectively. Also, two QSAR models were generated to explore the structural requirements controlling the different biological activities of the synthesized compounds against PPARγ and SUR.


Assuntos
Desenho de Fármacos , Hipoglicemiantes/síntese química , PPAR gama/agonistas , Receptores de Sulfonilureias/agonistas , Animais , Sítios de Ligação , Glicemia/análise , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Relação Quantitativa Estrutura-Atividade , Ratos , Receptores de Sulfonilureias/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA