Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res Perspect ; 9(5): e00854, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34478236

RESUMO

Targeting the first protein complex of the mitochondrial electron transport chain (MC1) in cancer has become an attractive therapeutic approach in the recent years, given the metabolic vulnerabilities of cancer cells. The anticancer effect exerted by the pleiotropic drug metformin and the associated reduction in hypoxia-inducible factor 1α (HIF-1α) levels putatively mediated by MC1 inhibition led to the development of HIF-1α inhibitors, such as BAY87-2243, with a more specific MC1 targeting. However, the development of BAY87-2243 was stopped early in phase 1 due to dose-independent emesis and thus there is still no clinical proof of concept for the approach. Given the importance of mitochondrial metabolism during cancer progression, there is still a strong therapeutic need to develop specific and safe MC1 inhibitors. We recently reported the synthesis of compounds with a novel chemotype and potent action on HIF-1α degradation and MC1 inhibition. We describe here the selectivity, safety profile and anti-cancer activity in solid tumors of lead compound EVT-701. In addition, using murine models of lung cancer and of Non-Hodgkin's B cell lymphoma we demonstrated that EVT-701 reduced tumor growth and lymph node invasion when used as a single agent therapy. LKB1 deficiency in lung cancer was identified as a potential indicator of accrued sensitivity to EVT-701, allowing stratification and selection of patients in clinical trials. Altogether these results support further evaluation of EVT-701 alone or in combination in preclinical models and eventually in patients.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Lewis/metabolismo , Proliferação de Células/efeitos dos fármacos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Neoplasias Pulmonares/metabolismo , Linfonodos/efeitos dos fármacos , Linfoma de Células B/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/genética , Animais , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Respiração Celular , Técnicas In Vitro , Neoplasias Pulmonares/patologia , Linfonodos/patologia , Linfoma de Células B/patologia , Camundongos , Mitocôndrias/metabolismo , Invasividade Neoplásica , Transplante de Neoplasias
2.
Cancers (Basel) ; 13(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34298712

RESUMO

Oxidative metabolism is crucial for leukemic stem cell (LSC) function and drug resistance in acute myeloid leukemia (AML). Mitochondrial metabolism also affects the immune system and therefore the anti-tumor response. The modulation of oxidative phosphorylation (OxPHOS) has emerged as a promising approach to improve the therapy outcome for AML patients. However, the effect of mitochondrial inhibitors on the immune compartment in the context of AML is yet to be explored. Immune checkpoints such as ectonucleotidase CD39 and programmed dead ligand 1 (PD-L1) have been reported to be expressed in AML and linked to chemo-resistance and a poor prognosis. In the present study, we first demonstrated that a novel selective electron transfer chain complex (ETC) I inhibitor, EVT-701, decreased the OxPHOS metabolism of murine and human cytarabine (AraC)-resistant leukemic cell lines. Furthermore, we showed that while AraC induced an immune response regulation by increasing CD39 expression and by reinforcing the interferon-γ/PD-L1 axis, EVT-701 reduced CD39 and PD-L1 expression in vitro in a panel of both murine and human AML cell lines, especially upon AraC treatment. Altogether, this work uncovers a non-canonical function of ETCI in controlling CD39 and PD-L1 immune checkpoints, thereby improving the anti-tumor response in AML.

3.
JCI Insight ; 2(4): e87489, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28239646

RESUMO

In breast cancer, a key feature of peritumoral adipocytes is their loss of lipid content observed both in vitro and in human tumors. The free fatty acids (FFAs), released by adipocytes after lipolysis induced by tumor secretions, are transferred and stored in tumor cells as triglycerides in lipid droplets. In tumor cell lines, we demonstrate that FFAs can be released over time from lipid droplets through an adipose triglyceride lipase-dependent (ATGL-dependent) lipolytic pathway. In vivo, ATGL is expressed in human tumors where its expression correlates with tumor aggressiveness and is upregulated by contact with adipocytes. The released FFAs are then used for fatty acid ß-oxidation (FAO), an active process in cancer but not normal breast epithelial cells, and regulated by coculture with adipocytes. However, in cocultivated cells, FAO is uncoupled from ATP production, leading to AMPK/acetyl-CoA carboxylase activation, a circle that maintains this state of metabolic remodeling. The increased invasive capacities of tumor cells induced by coculture are completely abrogated by inhibition of the coupled ATGL-dependent lipolysis/FAO pathways. These results show a complex metabolic symbiosis between tumor-surrounding adipocytes and cancer cells that stimulate their invasiveness, highlighting ATGL as a potential therapeutic target to impede breast cancer progression.


Assuntos
Adipócitos/metabolismo , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Lobular/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Lipase/metabolismo , Lipólise , Acetil-CoA Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Idoso , Animais , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Oxirredução , Triglicerídeos/metabolismo
4.
J Med Chem ; 56(23): 9441-56, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24175584

RESUMO

Compound 15 (SAR107375), a novel potent dual thrombin and factor Xa inhibitor resulted from a rational optimization process. Starting from compound 14, with low factor Xa and modest anti-thrombin inhibitory activities (IC50's of 3.5 and 0.39 µM, respectively), both activities were considerably improved, notably through the incorporation of a neutral chlorothiophene P1 fragment and tuning of P2 and P3-P4 fragments. Final optimization of metabolic stability with microsomes led to the identification of 15, which displays strong activity in vitro vs factor Xa and thrombin (with Ki's of 1 and 8 nM, respectively). In addition 15 presents good selectivity versus related serine proteases (roughly 300-fold), including trypsin (1000-fold), and is very active (0.39 µM) in the thrombin generation time (TGT) coagulation assay in human platelet rich plasma (PRP). Potent in vivo activity in a rat model of venous thrombosis following iv and, more importantly, po administration was also observed (ED50 of 0.07 and 2.8 mg/kg, respectively). Bleeding liability was reduced in the rat wire coil model, more relevant to arterial thrombosis, with 15 (blood loss increase of 2-fold relative to the ED80 value) compared to rivaroxaban 2 and dabigatran etexilate 1a.


Assuntos
Anticoagulantes/síntese química , Inibidores do Fator Xa , Fibrinolíticos/síntese química , Piperazinas/síntese química , Sulfonamidas/síntese química , Trombina/antagonistas & inibidores , Animais , Anticoagulantes/farmacologia , Cristalografia por Raios X , Desenho de Fármacos , Fibrinolíticos/farmacologia , Humanos , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Ratos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Trombose Venosa/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA