RESUMO
Cell-free DNA circulates in plasma at low levels as a normal by-product of cellular apoptosis. Multiple clinical pathologies, as well as environmental stressors can lead to increased circulating cell-free DNA (ccfDNA) levels. Plasma DNA studies frequently employ targeted amplicon deep sequencing platforms due to limited concentrations (ng/ml) of ccfDNA in the blood. Here, we report whole genome sequencing (WGS) and read distribution across chromosomes of ccfDNA extracted from two human plasma samples from normal, healthy subjects, representative of limited clinical samples at <1 ml. Amplification was sufficiently robust with ~90% of the reference genome (GRCh38.p2) exhibiting 10X coverage. Chromosome read coverage was uniform and directly proportional to the number of reads for each chromosome across both samples. Almost 99% of the identified genomic sequence variants were known annotated dbSNP variants in the hg38 reference genome. A high prevalence of C>T and T>C mutations was present along with a strong concordance of variants shared between the germline genome databases; gnomAD (81.1%) and the 1000 Genome Project (93.6%). This study demonstrates isolation and amplification procedures from low input ccfDNA samples that can detect sequence variants across the whole genome from amplified human plasma ccfDNA that can translate to multiple clinical research disciplines.
Assuntos
Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Cromossomos Humanos/genética , Genoma Humano , Mutação , Sequenciamento Completo do Genoma/métodos , HumanosRESUMO
The estrogen-related receptor α (ERRα) and the peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) play critical roles in the control of several physiological functions, including the regulation of genes involved in energy homeostasis. However, little is known about the ability of environmental chemicals to disrupt or modulate this important bioenergetics pathway in humans. The goal of this study was to develop a cell-based assay system with an intact PGC-1α/ERRα axis that could be used as a screening assay for detecting such chemicals. To this end, we successfully generated several stable cell lines expressing PGC-1α and showed that the reporter driven by the native ERRα hormone response unit (AAB-Luc) is active in these cell lines and that the activation is PGC-1α-dependent. Furthermore, we show that this activation can be blocked by the ERRα selective inverse agonist, XCT790. In addition, we find that genistein and bisphenol A further stimulate the reporter activity, while kaempferol has minimal effect. These cell lines will be useful for identifying environmental chemicals that modulate this important pathway.