Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 7(2): 137-143, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33594269

RESUMO

Zinc (Zn) is an essential micronutrient for plants and animals owing to its structural and catalytic roles in many proteins1. Zn deficiency affects around 2 billion people, mainly those who live on plant-based diets relying on crops from Zn-deficient soils2,3. Plants maintain adequate Zn levels through tightly regulated Zn homeostasis mechanisms involving Zn uptake, distribution and storage4, but evidence of how they sense Zn status is lacking. Here, we use in vitro and in planta approaches to show that the Arabidopsis thaliana F-group bZIP transcription factors bZIP19 and bZIP23, which are the central regulators of the Zn deficiency response, function as Zn sensors by binding Zn2+ ions to a Zn-sensor motif. Deletions or modifications of this Zn-sensor motif disrupt Zn binding, leading to a constitutive transcriptional Zn deficiency response, which causes a significant increase in plant and seed Zn accumulation. As the Zn-sensor motif is highly conserved in F-group bZIP proteins across land plants, the identification of this plant Zn sensor will promote new strategies to improve the Zn nutritional quality of plant-derived food and feed, and contribute to tackling the global Zn-deficiency health problem.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Zinco/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Physiol Biochem ; 142: 246-253, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31374377

RESUMO

Transcription factors such as MYB have previously been associated with the plant response to drought. In this work, studies on the function of the barley (Hordeum vulgare L.) transcription factor HvMYB1 show that gene expression is upregulated in wildtype barley roots and leaves under drought and osmotic stress. Transgenic barley plants that overexpress HvMYB1 were found to be more resistant to drought, showing enhanced relative water content and reduced water loss rate and stomatal conductance as compared to control plants. Levels of the osmolyte proline were enhanced as was expression of dehydrin HvDNH6 in the transgenic lines under drought conditions. The levels of the reactive oxygen species H2O2 were enhanced in wildtype roots and leaves by drought, but less so in the HvMYB1 overexpressing lines. Enzyme activity of the low affinity H2O2 degrading enzyme catalase (EC 1.11.1.6) was also lower in droughted HvMYB1 overexpressing lines. Gene expression of the high affinity ROS scavengers ASCORBATE PEROXIDASE and GLUTATHIONE PEROXIDASE was found to be constitutively high in the overexpressing lines, whereas CATALASE gene expression was similar to the control plants. These results suggest a role for HvMYB1 in protecting plants against drought in the vegetative plant by acting as a mediator of abscisic acid action.


Assuntos
Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Transpiração Vegetal , Plantas Geneticamente Modificadas
3.
Metallomics ; 5(9): 1110-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23851954

RESUMO

Plants are capable of inducing a range of physico-chemical and microbial modifications of the rhizosphere which can mobilize mineral nutrients or prevent toxic elements from entering the roots. Understanding how plants sense and adapt to variations in nutrient availability is essential in order to develop plant-based solutions addressing nutrient-use-efficiency and adaptation to nutrient-limited or -toxic soils. Recently two transcription factors of the bZIP family (basic-region leucine zipper) have been identified in Arabidopsis and shown to be pivotal in the adaptation response to zinc deficiency. They represent not only the first regulators of zinc homeostasis identified in plants, but also a very promising starting-point that can provide new insights into the molecular basis of how plants sense and adapt to the stress of zinc deficiency. Considering the available information thus far we propose in this review a putative model of how plants sense zinc deficiency.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Zinco/metabolismo , Adaptação Fisiológica/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Modelos Genéticos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Rizosfera
4.
J R Soc Interface ; 10(86): 20130438, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23804443

RESUMO

The complexity of many RNA processing pathways is such that a conventional systems modelling approach is inadequate to represent all the molecular species involved. We demonstrate that rule-based modelling permits a detailed model of a complex RNA signalling pathway to be defined. Phosphorylation of the RNA polymerase II (RNAPII) C-terminal domain (CTD; a flexible tail-like extension of the largest subunit) couples pre-messenger RNA capping, splicing and 3' end maturation to transcriptional elongation and termination, and plays a central role in integrating these processes. The phosphorylation states of the serine residues of many heptapeptide repeats of the CTD alter along the coding region of genes as a function of distance from the promoter. From a mechanistic perspective, both the changes in phosphorylation and the location at which they take place on the genes are a function of the time spent by RNAPII in elongation as this interval provides the opportunity for the kinases and phosphatases to interact with the CTD. On this basis, we synthesize the available data to create a kinetic model of the action of the known kinases and phosphatases to resolve the phosphorylation pathways and their kinetics.


Assuntos
Simulação por Computador , Modelos Químicos , RNA Polimerase II/química , Elongação da Transcrição Genética , Cinética , Fosforilação , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos
5.
PLoS Comput Biol ; 7(10): e1002215, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22022255

RESUMO

Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3' end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3' end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter.


Assuntos
Modelos Genéticos , Splicing de RNA , Transcrição Gênica , Genes Fúngicos , Genes Reporter , Íntrons , Cinética , Saccharomyces cerevisiae/genética
6.
Mol Cell ; 40(4): 582-93, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21095588

RESUMO

In eukaryotic cells, there is evidence for functional coupling between transcription and processing of pre-mRNAs. To better understand this coupling, we performed a high-resolution kinetic analysis of transcription and splicing in budding yeast. This revealed that shortly after induction of transcription, RNA polymerase accumulates transiently around the 3' end of the intron on two reporter genes. This apparent transcriptional pause coincides with splicing factor recruitment and with the first detection of spliced mRNA and is repeated periodically thereafter. Pausing requires productive splicing, as it is lost upon mutation of the intron and restored by suppressing the splicing defect. The carboxy-terminal domain of the paused polymerase large subunit is hyperphosphorylated on serine 5, and phosphorylation of serine 2 is first detected here. Phosphorylated polymerase also accumulates around the 3' splice sites of constitutively expressed, endogenous yeast genes. We propose that transcriptional pausing is imposed by a checkpoint associated with cotranscriptional splicing.


Assuntos
RNA Polimerase II/metabolismo , Splicing de RNA/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Genes Fúngicos/genética , Genes Reporter/genética , Íntrons/genética , Fosforilação , Estrutura Terciária de Proteína , RNA Polimerase II/química , Sítios de Splice de RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
7.
RNA ; 16(12): 2570-80, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20974745

RESUMO

We describe methods for obtaining a quantitative description of RNA processing at high resolution in budding yeast. As a model gene expression system, we constructed tetON (for induction studies) and tetOFF (for repression, derepression, and RNA degradation studies) yeast strains with a series of reporter genes integrated in the genome under the control of a tetO7 promoter. Reverse transcription and quantitative real-time-PCR (RT-qPCR) methods were adapted to allow the determination of mRNA abundance as the average number of copies per cell in a population. Fluorescence in situ hybridization (FISH) measurements of transcript numbers in individual cells validated the RT-qPCR approach for the average copy-number determination despite the broad distribution of transcript levels within a population of cells. In addition, RT-qPCR was used to distinguish the products of the different steps in splicing of the reporter transcripts, and methods were developed to map and quantify 3'-end cleavage and polyadenylation. This system permits pre-mRNA production, splicing, 3'-end maturation and degradation to be quantitatively monitored with unprecedented kinetic detail, suitable for mathematical modeling. Using this approach, we demonstrate that reporter transcripts are spliced prior to their 3'-end cleavage and polyadenylation, that is, cotranscriptionally.


Assuntos
Genes Reporter , Processamento de Terminações 3' de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Saccharomyces cerevisiae , Algoritmos , Estudos de Avaliação como Assunto , Processamento de Imagem Assistida por Computador , Hibridização in Situ Fluorescente/métodos , Cinética , Modelos Biológicos , Modelos Genéticos , Processamento de Terminações 3' de RNA/fisiologia , Precursores de RNA/análise , Precursores de RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
PLoS One ; 5(1): e8845, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20126621

RESUMO

BACKGROUND: The complexity of messenger RNA processing is now being uncovered by experimental techniques that are capable of detecting individual copies of mRNA in cells, and by quantitative real-time observations that reveal the kinetics. This processing is commonly modelled by permitting mRNA to be transcribed only when the promoter is in the on state. In this simple on/off model, the many processes involved in active transcription are represented by a single reaction. These processes include elongation, which has a minimum time for completion and processing that is not captured in the model. METHODOLOGY: In this paper, we explore the impact on the mRNA distribution of representing the elongation process in more detail. Consideration of the mechanisms of elongation leads to two alternative models of the coupling between the elongating polymerase and the state of the promoter: Processivity allows polymerases to complete elongation irrespective of the promoter state, whereas coupling requires the promoter to be active to produce a full-length transcript. We demonstrate that these alternatives have a significant impact on the predicted distributions. Models are simulated by the Gillespie algorithm, and the third and fourth moments of the resulting distribution are computed in order to characterise the length of the tail, and sharpness of the peak. By this methodology, we show that the moments provide a concise summary of the distribution, showing statistically-significant differences across much of the feasible parameter range. CONCLUSIONS: We conclude that processivity is not fully consistent with the on/off model unless the probability of successfully completing elongation is low--as has been observed. The results also suggest that some form of coupling between the promoter and a rate-limiting step in transcription may explain the cell's inability to maintain high mRNA levels at low noise--a prediction of the on/off model that has no supporting evidence.


Assuntos
RNA Mensageiro/genética , Transcrição Gênica , Regiões Promotoras Genéticas , Processos Estocásticos
9.
J Cell Sci ; 121(Pt 15): 2463-72, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18611963

RESUMO

P-bodies are cytoplasmic foci that are sites of mRNA degradation and translational repression. It is not known what causes the accumulation of RNA-degradation factors in P-bodies, although RNA is required. The yeast Lsm1-7p complex (comprising Lsm1p to Lsm7p) is recruited to P-bodies under certain stress conditions. It is required for efficient decapping and degradation of mRNAs, but not for the assembly of P-bodies. Here we show that the Lsm4p subunit and its asparagine-rich C-terminus are prone to aggregation, and that this tendency to aggregate promotes efficient accumulation of Lsm1-7p in P-bodies. The presence of glutamine- and/or asparagine-rich (Q/N-rich) regions in other P-body components suggests a more general role for aggregation-prone residues in P-body localization and assembly. This is supported by reduced P-body accumulation of Ccr4p, Pop2p and Dhh1p after deletion of these domains, and by the observed aggregation of the Q/N-rich region from Ccr4p.


Assuntos
Asparagina/análise , Grânulos Citoplasmáticos/metabolismo , Glutamina/análise , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Asparagina/metabolismo , Citoplasma/metabolismo , Glutamina/metabolismo , Dados de Sequência Molecular , Estabilidade de RNA/fisiologia , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
10.
Proteomics ; 6(6): 1886-96, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16470656

RESUMO

14-3-3 proteins are important eukaryotic regulatory proteins. Barley (Hordeum vulgare L.) 14-3-3A was over-expressed, immobilised and used to affinity purify 14-3-3 binding proteins from developing barley grains. Binding was shown to be phosphorylation-dependent. These proteins were fractionated by PAGE and identified by MALDI-TOF MS. In total, 54 14-3-3 binding proteins were identified, 49 of these interactions are novel to plants. These proteins fell into a number of functional categories. The largest category was for carbohydrate metabolism, including plastidic enzymes for starch synthesis and modification. 14-3-3 was shown to be present in isolated plastids. Four of five enzymes involved in sucrose biosynthesis from triose phosphates were identified, suggesting co-ordinated regulation of this pathway. Invertase and sucrose synthase, which break down sucrose to hexoses, were found. Sucrose synthase activity was shown to be inhibited by exogenous 14-3-3 in a dosage-dependent manner. The second-largest functional group was for proteins involved in stress and defence responses; for example, RGH2A, closely related to the MLA powdery mildew resistance protein, was found. This work illustrates the broad range of processes in which 14-3-3 may be involved, and augments previous data demonstrating key roles in carbohydrate metabolism and plant defence.


Assuntos
Proteínas 14-3-3/análise , Hordeum/química , Hordeum/crescimento & desenvolvimento , Proteínas de Plantas/análise , Proteoma/análise , Proteômica/métodos , Western Blotting , Cromatografia de Afinidade , Cromatografia por Troca Iônica , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Mapeamento de Peptídeos , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA