Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34654739

RESUMO

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in over 100 million infections and millions of deaths. Effective vaccines remain the best hope of curtailing SARS-CoV-2 transmission, morbidity, and mortality. The vaccines in current use require cold storage and sophisticated manufacturing capacity, which complicates their distribution, especially in less developed countries. We report the development of a candidate SARS-CoV-2 vaccine that is purely protein based and directly targets antigen-presenting cells. It consists of the SARS-CoV-2 Spike receptor-binding domain (SpikeRBD) fused to an alpaca-derived nanobody that recognizes class II major histocompatibility complex antigens (VHHMHCII). This vaccine elicits robust humoral and cellular immunity against SARS-CoV-2 and its variants. Both young and aged mice immunized with two doses of VHHMHCII-SpikeRBD elicit high-titer binding and neutralizing antibodies. Immunization also induces strong cellular immunity, including a robust CD8 T cell response. VHHMHCII-SpikeRBD is stable for at least 7 d at room temperature and can be lyophilized without loss of efficacy.


Assuntos
Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/farmacologia , COVID-19/imunologia , COVID-19/prevenção & controle , Pandemias , SARS-CoV-2/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/epidemiologia , Vacinas contra COVID-19/administração & dosagem , Camelídeos Americanos/imunologia , Feminino , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Imunização Secundária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pandemias/prevenção & controle , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , SARS-CoV-2/genética , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/administração & dosagem , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
2.
Elife ; 92020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32396064

RESUMO

Metabolic pathways and inflammatory processes are under circadian regulation. Rhythmic immune cell recruitment is known to impact infection outcomes, but whether the circadian clock modulates immunometabolism remains unclear. We find that the molecular clock Bmal1 is induced by inflammatory stimulants, including Ifn-γ/lipopolysaccharide (M1) and tumor-conditioned medium, to maintain mitochondrial metabolism under metabolically stressed conditions in mouse macrophages. Upon M1 stimulation, myeloid-specific Bmal1 knockout (M-BKO) renders macrophages unable to sustain mitochondrial function, enhancing succinate dehydrogenase (SDH)-mediated mitochondrial production of reactive oxygen species as well as Hif-1α-dependent metabolic reprogramming and inflammatory damage. In tumor-associated macrophages, aberrant Hif-1α activation and metabolic dysregulation by M-BKO contribute to an immunosuppressive tumor microenvironment. Consequently, M-BKO increases melanoma tumor burden, whereas administering the SDH inhibitor dimethyl malonate suppresses tumor growth. Therefore, Bmal1 functions as a metabolic checkpoint that integrates macrophage mitochondrial metabolism, redox homeostasis and effector functions. This Bmal1-Hif-1α regulatory loop may provide therapeutic opportunities for inflammatory diseases and immunotherapy.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Fatores de Transcrição ARNTL/genética , Aminoácidos/metabolismo , Animais , Relógios Circadianos , Técnicas de Inativação de Genes , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interferon gama , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Malonatos/farmacologia , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo , Succinato Desidrogenase/metabolismo , Transcrição Gênica , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
3.
Science ; 368(6490)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32355002

RESUMO

Repeated bouts of exercise condition muscle mitochondria to meet increased energy demand-an adaptive response associated with improved metabolic fitness. We found that the type 2 cytokine interleukin-13 (IL-13) is induced in exercising muscle, where it orchestrates metabolic reprogramming that preserves glycogen in favor of fatty acid oxidation and mitochondrial respiration. Exercise training-mediated mitochondrial biogenesis, running endurance, and beneficial glycemic effects were lost in Il13-/- mice. By contrast, enhanced muscle IL-13 signaling was sufficient to increase running distance, glucose tolerance, and mitochondrial activity similar to the effects of exercise training. In muscle, IL-13 acts through both its receptor IL-13Rα1 and the transcription factor Stat3. The genetic ablation of either of these downstream effectors reduced running capacity in mice. Thus, coordinated immunological and physiological responses mediate exercise-elicited metabolic adaptations that maximize muscle fuel economy.


Assuntos
Adaptação Fisiológica/imunologia , Glicogênio/metabolismo , Interleucina-13/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Resistência Física/imunologia , Animais , Glicemia/metabolismo , Linhagem Celular , Ácidos Graxos/metabolismo , Feminino , Humanos , Interleucina-13/sangue , Interleucina-13/genética , Subunidade alfa1 de Receptor de Interleucina-13/genética , Subunidade alfa1 de Receptor de Interleucina-13/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mioblastos/metabolismo , Oxirredução , Condicionamento Físico Animal , Corrida , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
4.
Mol Metab ; 6(10): 1186-1197, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29031719

RESUMO

OBJECTIVE: Alternative activation (M2) of adipose tissue resident macrophage (ATM) inhibits obesity-induced metabolic inflammation. The underlying mechanisms remain unclear. Recent studies have shown that dysregulated lipid homeostasis caused by increased lipolysis in white adipose tissue (WAT) in the obese state is a trigger of inflammatory responses. We investigated the role of M2 macrophages in lipotoxicity-induced inflammation. METHODS: We used microarray experiments to profile macrophage gene expression regulated by two M2 inducers, interleukin-4 (Il-4), and peroxisome proliferator-activated receptor delta/gamma (Pparδ/Pparγ) agonists. Functional validation studies were performed in bone marrow-derived macrophages and mice deprived of the signal transducer and activator of transcription 6 gene (Stat6; downstream effector of Il-4) or Pparδ/Pparγ genes (downstream effectors of Stat6). Palmitic acid (PA) and ß-adrenergic agonist were employed to induce macrophage lipid loading in vitro and in vivo, respectively. RESULTS: Profiling of genes regulated by Il-4 or Pparδ/Pparγ agonists reveals that alternative activation promotes the cell survival program, while inhibiting that of inflammation-related cell death. Deletion of Stat6 or Pparδ/Pparγ increases the susceptibility of macrophages to PA-induced cell death. NLR family pyrin domain containing 3 (Nlrp3) inflammasome activation by PA in the presence of lipopolysaccharide is also increased in Stat6-/- macrophages and to a lesser extent, in Pparδ/γ-/- macrophages. In concert, ß-adrenergic agonist-induced lipolysis results in higher levels of cell death and inflammatory markers in ATMs derived from myeloid-specific Pparδ/γ-/- or Stat6-/- mice. CONCLUSIONS: Our data suggest that ATM cell death is closely linked to metabolic inflammation. Within WAT where concentrations of free fatty acids fluctuate, M2 polarization regulated by the Stat6-Ppar axis enhances ATM's tolerance to lipid-mediated stress, thereby maintaining the homeostatic state.


Assuntos
Tecido Adiposo Branco/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos/fisiologia , Tecido Adiposo Branco/patologia , Animais , Apoptose/fisiologia , Morte Celular/fisiologia , Homeostase , Inflamação/metabolismo , Inflamação/patologia , Interleucina-4/metabolismo , Metabolismo dos Lipídeos , Lipólise/fisiologia , Lipopolissacarídeos/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia , PPAR delta/agonistas , PPAR delta/genética , PPAR gama/agonistas , PPAR gama/genética , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais , Transcriptoma
5.
Cell Metab ; 22(4): 709-20, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26365180

RESUMO

Mitochondria undergo architectural/functional changes in response to metabolic inputs. How this process is regulated in physiological feeding/fasting states remains unclear. Here we show that mitochondrial dynamics (notably fission and mitophagy) and biogenesis are transcriptional targets of the circadian regulator Bmal1 in mouse liver and exhibit a metabolic rhythm in sync with diurnal bioenergetic demands. Bmal1 loss-of-function causes swollen mitochondria incapable of adapting to different nutrient conditions accompanied by diminished respiration and elevated oxidative stress. Consequently, liver-specific Bmal1 knockout (LBmal1KO) mice accumulate oxidative damage and develop hepatic insulin resistance. Restoration of hepatic Bmal1 activities in high-fat-fed mice improves metabolic outcomes, whereas expression of Fis1, a fission protein that promotes quality control, rescues morphological/metabolic defects of LBmal1KO mitochondria. Interestingly, Bmal1 homolog AHA-1 in C. elegans retains the ability to modulate oxidative metabolism and lifespan despite lacking circadian regulation. These results suggest clock genes are evolutionarily conserved energetics regulators.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/genética , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Criptocromos/genética , Criptocromos/metabolismo , Dieta Hiperlipídica , Hepatócitos/citologia , Hepatócitos/metabolismo , Insulina/metabolismo , Longevidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Interferência de RNA , Transdução de Sinais
6.
Trends Endocrinol Metab ; 25(7): 356-63, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24895003

RESUMO

Metabolic homeostasis is achieved through coordinated regulation across several tissues. Studies using mouse genetic models have shown that perturbation of specific pathways of lipid metabolism in metabolically active tissues impacts systemic metabolic homeostasis. The use of metabolomic technologies combined with genetic models has helped to identify several potential lipid mediators that serve as metabolic messengers to communicate energy status and modulate substrate utilization among tissues. When provided exogenously, these lipid metabolites exhibit biological effects on glucose and lipid metabolism, indicating a therapeutic potential for treating metabolic diseases. In this review we summarize recent advances in inter-organ communication through novel mechanisms, with a focus on lipid mediators synthesized de novo or derived from dietary sources, and discuss challenges and future directions.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Animais , Metabolismo Energético/fisiologia , Glucose/metabolismo , Humanos , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA