Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 339: 117914, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37086640

RESUMO

An attached-growth continuous flow hydrogenotrophic denitrification system was investigated for groundwater treatment. Two bench-scale packed-bed reactors were used in series, without external pH adjustment or carbon source addition, while inorganic carbonate salts already contained in the groundwater were the sole carbon source used by the denitrifying bacteria. The hydrogen was produced by water electrolysis using renewable energy sources thus minimizing resource-draining factors of the treatment process. The biofilter was subjected to a combination of three groundwater retention times (13.5, 27 and 54 min, corresponding to 20, 10 and 5 mL min-1 inlet water flow rates) and two hydrogen flow values (10 and 20 mL min-1) to evaluate its efficiency under different operating parameters. In all cases, significant nitrate percentage removals were achieved, ranged between 64.1% and 100%. The treatment process appears to slow down with lower retention times and H2 flow rate values, although residual nitrate concentrations were always in the range of 0-5.1 mg L-1, values below the maximum permitted limit of 11.3 mg L-1. In cases where nitrite accumulation was detected, a continuous flow electrochemical oxidation process with three different current density values (5.0, 7.5 and 10.0 mA cm-2) was examined as a post-treatment step aiming to completely remove the toxic nitrite anions. Finally, an advanced mathematical model of the attached growth hydrogenotrophic denitrification process was developed to predict concentrations of all the substrates examined in the bio-filter (nitrate, nitrite, inorganic carbon and hydrogen).


Assuntos
Água Subterrânea , Nitratos , Nitritos , Desnitrificação , Carbono , Hidrogênio , Água , Reatores Biológicos/microbiologia
2.
Chemosphere ; 293: 133527, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34998845

RESUMO

Dark fermentation (DF) of several types of wastes is a promising process to alleviate environmental pollution as it leads to the production of valuable hydrogen (H2) gas and high added value products, such as volatile fatty acids (VFAs). In this study a kinetic model for fermentative H2 production in an Up-flow column reactor (UFCR) is presented. Τhe model structure includes seven biochemical reactions taking place in a two-phase biofilm-liquid system. The observed difference in the overall stoichiometry of the bioconversion process for different hydraulic retention times (HRTs) is predicted by this model as it is attributed to the difference in the extent of individual bioconversion steps, each of which has a constant stoichiometry but a different rate depending on the HRT. The respective kinetic parameters were estimated through model fitting to the experimental results of the UFCR, which operated at different HRTs (12-2 h) and fed with the soluble fraction of a food industry waste (FIW). A good agreement of the experimental and predicted values of soluble metabolic products and H2 production was obtained, rendering this model as a useful tool for further investigation and prediction of the characteristics of the DF process in attached-biomass growth systems.


Assuntos
Reatores Biológicos , Hidrogênio , Anaerobiose , Ácidos Graxos Voláteis , Fermentação , Hidrogênio/metabolismo
3.
Sci Total Environ ; 732: 139230, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32438165

RESUMO

In the present study the bioconversion of dried household food waste (FORBI) to energy carriers was investigated aiming to its sustainable management and valorization. FORBI was either directly fermented towards ethanol and hydrogen or was previously subjected to extraction with water resulting to a liquid fraction (extract) rich in sugars and a solid residue, which were then fermented separately. Subsequently, the effluents were assessed as substrates for methane production via anaerobic digestion (AD). Mono-cultures and co-cultures of C5 and C6 yeasts were used for the alcoholic fermentation whereas for the production of hydrogen, mixed acidogenic consortia were used. Taking into account the optimum yields of biofuels, the amount of recoverable energy was estimated based for each different approach. The maximum ethanol yield was 0.16 g ethanol per kg of FORBI and it was achieved for separate fermentation of liquid and solid fractions of the waste. The highest hydrogen yield that was observed was 210.44 L ± 4.02 H2/kg TS FORBI for 1% solids loading and supplementation with cellulolytic enzymes. Direct AD of either the whole FORBI or its individual fractions led to lower overall energy recovery, compared to that obtained when fermentation and subsequent AD were applied. The recoverable energy was estimated for the different exploitation approaches of the waste. The maximum achieved recoverable energy was 21.49 ± 0.57 MJ/kg.


Assuntos
Alimentos , Anaerobiose , Biocombustíveis , Reatores Biológicos , Fermentação , Hidrogênio , Metano , Fenômenos Microbiológicos , Eliminação de Resíduos
4.
Bioresour Technol ; 289: 121614, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31203181

RESUMO

The present study focuses on the exploration of the potential use of potato peels waste (PPW) as feedstock for bioethanol production, using a newly isolated yeast strain, Wickerhamomyces anomalus, via different saccharification and fermentation schemes. The saccharification of PPW was performed via thermal and chemical (acid, alkali) pretreatment, as well as via enzymatic hydrolysis through the use of commercial enzymes (cellulase and amylase) or enzymes produced at lab scale (alpha-amylase from Bacillus sp. Gb67), either separately or in mixtures. The results indicated that the enzymatic treatment by commercial enzymes led to a higher saccharification efficiency (72.38%) and ethanol yield (0.49 g/gconsumed sugars) corresponding to 96% of the maximum theoretical. In addition, acid pretreatment was found to be beneficial for the process, leading also to high hydrolysis and ethanol yields, indicating that PPW is a very promising feedstock for bio-ethanol production by W. anomalus under different process schemes.


Assuntos
Celulase , Solanum tuberosum , Etanol , Fermentação , Hidrólise , Saccharomyces cerevisiae
5.
Bioresour Technol ; 263: 75-83, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29730521

RESUMO

The biotransformation of the pre-dried and shredded organic fraction of kitchen waste to ethanol was investigated, via co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis (Scheffersomyces stipitis). Preliminary experiments with synthetic media were performed, in order to investigate the effect of different operational parameters on the ethanol production efficiency of the co-culture. The control of the pH and the supplementation with organic nitrogen were shown to be key factors for the optimization of the process. Subsequently, the ethanol production efficiency from the waste was assessed via simultaneous saccharification and fermentation experiments. Different loadings of cellulolytic enzymes and mixtures of cellulolytic with amylolytic enzymatic blends were tested in order to enhance the substrate conversion efficiency. It was further shown that for solids loading up to 40% waste on dry mass basis, corresponding to 170 g.L-1 initial concentration of carbohydrates, no substrate inhibition occurred, and ethanol concentration up to 45 g.L-1 was achieved.


Assuntos
Etanol , Fermentação , Saccharomyces cerevisiae , Biocombustíveis , Técnicas de Cocultura , Hidrólise , Pichia , Eliminação de Resíduos
6.
Bioresour Technol ; 250: 784-792, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29245129

RESUMO

In this study a novel modeling approach for describing fermentative hydrogen production in a continuous stirred tank reactor (CSTR) was developed, using the Aquasim modeling platform. This model accounts for the key metabolic reactions taking place in a fermentative hydrogen producing reactor, using fixed stoichiometry but different reaction rates. Biomass yields are determined based on bioenergetics. The model is capable of describing very well the variation in the distribution of metabolic products for a wide range of hydraulic retention times (HRT). The modeling approach is demonstrated using the experimental data obtained from a CSTR, fed with food industry waste (FIW), operating at different HRTs. The kinetic parameters were estimated through fitting to the experimental results. Hydrogen and total biogas production rates were predicted very well by the model, validating the basic assumptions regarding the implicated stoichiometric biochemical reactions and their kinetic rates.


Assuntos
Reatores Biológicos , Fermentação , Hidrogênio , Biocombustíveis , Biomassa
7.
J Environ Manage ; 203(Pt 2): 704-713, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27080567

RESUMO

In this study fungal pretreatment of willow sawdust (WSD) via the white rot fungi Leiotrametes menziesii and Abortiporus biennis was studied and the effect on fractionation of lignocellulosic biomass and biochemical methane potential (BMP), was evaluated. Scanning electron microscopy (SEM) and IR spectroscopy were used to investigate the changes in the structural characteristics of the pretreated WSD. Fungal pretreatment results revealed that A. biennis is more attractive, since it resulted in higher lignin degradation and lower holocellulose uptake. Samples of the 14th and 30th d of cultivation (i.e. the middle and the end of the pretreatment experiment) with both fungi were used for BMP tests and the effect of pretreatment duration was also evaluated. BMP increase by 31 and 43% was obtained due to the cultivation of WSD with A. biennis, for 14 and 30 d, respectively. In addition, combination of biological (after 30 d of cultivation) with alkaline (NaOH 20 g/100 gTS) pretreatment was performed, in order to assess the effect of the chemical agent on biologically pretreated WSD, in terms of lignocellulosic content and BMP. Combination of alkaline with fungal pretreatment led to high lignin degradation for both fungi, while the cellulose and hemicellulose removal efficiencies were higher for combined alkaline and L. menziesii pretreatment. The maximum BMP was observed for the combined alkaline and A. biennis pretreatment and was 12.5 and 50.1% higher than the respective alkaline and fungal pretreatment alone and 115% higher than the respective BMP of raw WSD.


Assuntos
Biocombustíveis , Salix , Biomassa , Fungos , Lignina , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA