Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(23): 236802, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35749173

RESUMO

Parametric generation of oscillations and waves is a paradigm, which is known to be realized in various physical systems. Unique properties of quantum semiconductor superlattices allow us to investigate high-frequency phenomena induced by the Bragg reflections and negative differential velocity of the miniband electrons. Effects of parametric gain in the superlattices at different strengths of dissipation have been earlier discussed in a number of theoretical works, but their experimental demonstrations are so far absent. Here, we report on the first observation of the dissipative parametric generation in a subcritically doped GaAs/AlGaAs superlattice subjected to a dc bias and a microwave pump. We argue that the dissipative parametric mechanism originates from a periodic variation of the negative differential velocity. It enforces excitation of slow electrostatic waves in the superlattice that provide a significant enhancement of the gain coefficient. This work paves the way for a development of a miniature solid-state parametric generator of GHz-THz frequencies operating at room temperature.

2.
J Diabetes Sci Technol ; 4(5): 1041-54, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20920424

RESUMO

BACKGROUND: Movement of the optical interface used to collect noninvasive near-infrared spectra is known to dramatically increase prediction errors for glucose concentration measurements within the interstitial fluid of living rat skin. Prediction errors increase by more than 2.5-fold when the interface is moved before each non-invasive measurement compared to measurements where the interface position is constant throughout. Chemical heterogeneity of the skin matrix is examined as a possible mechanism for the strong sensitivity to the interface placement during noninvasive measurements conducted from transmission near-infrared absorption spectroscopy. METHOD: Microspectroscopy was performed over a region of the near-infrared spectrum (4000-5000 cm(-1)) to map the concentrations of water, collagen protein, fat, and keratin protein within the skin tissue matrix through which noninvasive spectra are collected. Maps were created for multiple samples of skin excised from male and female animals. Sets of near-infrared spectra were constructed to simulate noninvasive spectra in accord with the basic tissue composition found from the microspectroscopic maps with added information corresponding to a span of glucose concentrations ranging from 5 to 35 mM and Gaussian-distributed noise. RESULTS: Microspectroscopic maps of rat skin reveal similar patterns of heterogeneity for major chemical components of skin samples excised from both male and female animals. These maps demonstrate concentration domains with dimensions similar to the size of the fiber interface used to collect noninvasive spectra. Partial least squares calibration models generated from sets of simulated spectra demonstrate increases in prediction errors for glucose when the spectral matrix is changed in accord with the degree of chemical heterogeneity displayed in the skin maps. Prediction errors typically increase between 100 and 1000% when comparing errors generated from spectra that represent a single tissue composition versus spectra that represent a varied skin composition in accord with the distribution displayed in the skin maps. CONCLUSIONS: The distribution of the major components of skin is not uniform, but establishes domains within the skin matrix that strongly impact prediction errors for the noninvasive spectroscopic measurement of glucose within the interstitial fluid of rat dermis tissue. The observed increase in prediction error (>2.5-fold) determined from actual noninvasive measurements is within the lower range of prediction error increases demonstrated by this simulation study. These findings implicate that chemical heterogeneity within the tissue matrix is a major factor in the sensitivity of the location of the fiber interface used to collect noninvasive spectral data.


Assuntos
Líquido Extracelular/química , Glucose/análise , Modelos Biológicos , Pele/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Colágeno Tipo I/análise , Feminino , Queratinas/análise , Lipídeos/análise , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley , Água/análise
3.
Phys Rev Lett ; 102(14): 140405, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19392419

RESUMO

Electrons performing Bloch oscillations in an energy band of a dc-biased superlattice in the presence of weak dissipation can potentially generate THz fields at room temperature. The realization of such a Bloch oscillator is a long-standing problem due to the instability of a homogeneous electric field in conditions of negative differential conductivity. We establish the theoretical feasibility of stable THz gain in a long superlattice device in which the bias is quasistatically modulated by microwave fields. The modulation waveforms must have at least two harmonics in their spectra.

4.
J Diabetes Sci Technol ; 3(2): 219-32, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20144353

RESUMO

BACKGROUND: Noninvasive glucose measurements are possible by analysis of transmitted near-infrared light over the 4000- to 5000-cm(-1) spectral range. Such measurements are highly sensitive to the exact position of the fiber-optic interface on the surface of the skin sample. A critical question is the degree of heterogeneity of the major chemical components of the skin matrix in relation to the size of the fiber-optic probed used to collect noninvasive spectra. Microscopic spectral mapping is used to map the chemical distribution for a set of excised sections of rat skin. METHOD: A Fourier transform near-infrared microspectrometer was used to collect transmission spectra from 16 tissue samples harvested from a set of four healthy Harlan-Sprague male rats. A reference point in the center of the tissue sample was probed regularly to track dehydration, changes in tissue composition, and changes in instrument performance. Amounts of the major skin constituents were determined by fitting microspectra to a set of six pure component absorbance spectra corresponding to water, type I collagen protein, keratin protein, fat, an offset term, and a slope term. RESULTS: Microspectroscopy provides spectra with root mean square noise levels on 100% lines between 418 and 1475 microabsorbance units, which is sufficient for measuring the main chemical components of skin. The estimated spatial resolution of the microscope is 220 microm. The amounts of each tissue matrix component were determined for each 480 x 360-microm(2) location of a 4.8 x 3.6-mm(2) rectangular block of skin tissue. These spectra were used to generate two-dimensional distribution maps for each of the principal skin components. CONCLUSIONS: Distribution of the chemical components of rat skin is significant relative to the dimensions of noninvasive glucose sensing. Chemical distribution maps reveal that variations in the chemical composition of the skin samples are on the same length scale as the fiber-optic probe used to collect noninvasive near-infrared spectra. Analysis of variance between tissue slices collected for one animal and analysis of variations between animals indicate that animal-to-animal variation for all four chemical components is significantly higher than variations between samples for a given animal. These findings justify the collection and interpretation of near-infrared microspectroscopic maps of human skin to establish chemical heterogeneity and its impact on noninvasive glucose sensing for the management of diabetes.


Assuntos
Glicemia/análise , Diabetes Mellitus Tipo 1/sangue , Microespectrofotometria/instrumentação , Pele/química , Animais , Automonitorização da Glicemia/instrumentação , Automonitorização da Glicemia/métodos , Água Corporal/química , Colágeno Tipo I/análise , Humanos , Queratinas/análise , Masculino , Microespectrofotometria/métodos , Monitorização Ambulatorial , Ratos , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA