Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1124, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321058

RESUMO

The recovery of mitochondrial quality control (MQC) may bring innovative solutions for neuroprotection, while imposing a significant challenge given the need of holistic approaches to restore mitochondrial dynamics (fusion/fission) and turnover (mitophagy and biogenesis). In diabetic retinopathy, this is compounded by our lack of understanding of human retinal neurodegeneration, but also how MQC processes interact during disease progression. Here, we show that mitochondria hyperfusion is characteristic of retinal neurodegeneration in human and murine diabetes, blunting the homeostatic turnover of mitochondria and causing metabolic and neuro-inflammatory stress. By mimicking this mitochondrial remodelling in vitro, we ascertain that N6-furfuryladenosine enhances mitochondrial turnover and bioenergetics by relaxing hyperfusion in a controlled fashion. Oral administration of N6-furfuryladenosine enhances mitochondrial turnover in the diabetic mouse retina (Ins2Akita males), improving clinical correlates and conferring neuroprotection regardless of glycaemic status. Our findings provide translational insights for neuroprotection in the diabetic retina through the holistic recovery of MQC.


Assuntos
Adenosina , Diabetes Mellitus Experimental , Cinetina , Dinâmica Mitocondrial , Masculino , Camundongos , Humanos , Animais , Neuroproteção , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , Mitocôndrias/metabolismo
2.
Biosens Bioelectron ; 216: 114623, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36029662

RESUMO

Near-infrared (NIR) chemical fluorophores are promising tools for in-vivo imaging in real time but often succumb to rapid photodegradation. Indocyanine green (ICG) is the only NIR dye with regulatory approval for ocular imaging in humans; however, ICG, when employed for applications such as labelling immune cells, has limited sensitivity and does not allow precise detection of specific inflammatory events, for example leukocyte recruitment during uveitic flare-ups. We investigated the potential use of photostable novel triazole NIR cyanine (TNC) dyes for detecting and characterising activated T-cell activity within the eye. Three TNC dyes were evaluated for ocular cytotoxicity in-vitro using a MTT assay and optimised concentrations for intraocular detection within ex-vivo porcine eyes after topical application or intracameral injections of the dyes. TNC labelled T-cell tracking experiments and mechanistic studies were also performed in-vitro. TNC-1 and TNC-2 dyes exhibited greater fluorescence intensity than ICG at 10 µM, whereas TNC-3 was only detectable at 100 µM within the porcine eye. TNC dyes did not demonstrate any ocular cell toxicity at working concentrations of 10 µM. CD4+T-cells labelled with TNC-1 or TNC-2 were detected within the porcine eye, with TNC-1 being brighter than TNC-2. Detection of TNC-1 and TNC-2 into CD4+T-cells was prevented by prior incubation with dynole 34-2 (50 µM), suggesting active uptake of these dyes via dynamin-dependent processes. The present study provides evidence that TNC dyes are suitable to detect activated CD4+T-cells within the eye with potential as a diagnostic marker for ocular inflammatory diseases.


Assuntos
Técnicas Biossensoriais , Verde de Indocianina , Animais , Corantes Fluorescentes/metabolismo , Humanos , Verde de Indocianina/metabolismo , Inflamação/induzido quimicamente , Imagem Óptica/métodos , Suínos , Triazóis
3.
Br J Pharmacol ; 179(9): 1908-1937, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33769566

RESUMO

Age-related macular degeneration (AMD) is the most common cause of blindness in the Western world and is characterised in its latter stages by retinal cell death and neovascularisation and earlier stages with the loss of parainflammatory homeostasis. Patients with neovascular AMD (nAMD) are treated with frequent intraocular injections of anti-vascular endothelial growth factor (VEGF) therapies, which are not only unpopular with patients but carry risks of sight-threatening complications. A minority of patients are unresponsive with no alternative treatment available, and some patients who respond initially eventually develop a tolerance to treatment. New therapeutics with improved delivery methods and sustainability of clinical effects are required, in particular for non-neovascular AMD (90% of cases and no current approved treatments). There are age-related and disease-related changes that occur which can affect ocular drug delivery. Here, we review the latest emerging therapies for AMD, their delivery routes and implications for translating to clinical practice. LINKED ARTICLES: This article is part of a themed issue on Inflammation, Repair and Ageing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.9/issuetoc.


Assuntos
Inibidores da Angiogênese , Degeneração Macular Exsudativa , Inibidores da Angiogênese/uso terapêutico , Humanos , Injeções Intravítreas , Retina , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Degeneração Macular Exsudativa/induzido quimicamente , Degeneração Macular Exsudativa/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA