Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 48(9): 761-775, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482516

RESUMO

The cell orchestrates the dance of chromosome segregation with remarkable speed and fidelity. The mitotic spindle is built from scratch after interphase through microtubule (MT) nucleation, which is dependent on the γ-tubulin ring complex (γ-TuRC), the universal MT template. Although several MT nucleation pathways build the spindle framework, the question of when and how γ-TuRC is targeted to these nucleation sites in the spindle and subsequently activated remains an active area of investigation. Recent advances facilitated the discovery of new MT nucleation effectors and their mechanisms of action. In this review, we illuminate each spindle assembly pathway and subsequently consider how the pathways are merged to build a spindle.


Assuntos
Proteínas Associadas aos Microtúbulos , Tubulina (Proteína) , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo , Centro Organizador dos Microtúbulos/metabolismo
2.
Nat Commun ; 14(1): 3682, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344496

RESUMO

Targeting protein for Xklp2 (TPX2) is a key factor that stimulates branching microtubule nucleation during cell division. Upon binding to microtubules (MTs), TPX2 forms condensates via liquid-liquid phase separation, which facilitates recruitment of microtubule nucleation factors and tubulin. We report the structure of the TPX2 C-terminal minimal active domain (TPX2α5-α7) on the microtubule lattice determined by magic-angle-spinning NMR. We demonstrate that TPX2α5-α7 forms a co-condensate with soluble tubulin on microtubules and binds to MTs between two adjacent protofilaments and at the intersection of four tubulin heterodimers. These interactions stabilize the microtubules and promote the recruitment of tubulin. Our results reveal that TPX2α5-α7 is disordered in solution and adopts a folded structure on MTs, indicating that TPX2α5-α7 undergoes structural changes from unfolded to folded states upon binding to microtubules. The aromatic residues form dense interactions in the core, which stabilize folding of TPX2α5-α7 on microtubules. This work informs on how the phase-separated TPX2α5-α7 behaves on microtubules and represents an atomic-level structural characterization of a protein that is involved in a condensate on cytoskeletal filaments.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo
4.
Elife ; 92020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31933480

RESUMO

Microtubules are nucleated from specific locations at precise times in the cell cycle. However, the factors that constitute these microtubule nucleation pathways and their mode of action still need to be identified. Using purified Xenopus laevis proteins we biochemically reconstitute branching microtubule nucleation, which is critical for chromosome segregation. We found that besides the microtubule nucleator gamma-tubulin ring complex (γ-TuRC), the branching effectors augmin and TPX2 are required to efficiently nucleate microtubules from pre-existing microtubules. TPX2 has the unexpected capacity to directly recruit γ-TuRC as well as augmin, which in turn targets more γ-TuRC along the microtubule lattice. TPX2 and augmin enable γ-TuRC-dependent microtubule nucleation at preferred branching angles of less than 90 degrees from regularly-spaced patches along microtubules. This work provides a blueprint for other microtubule nucleation pathways and helps explain how microtubules are generated in the spindle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Encéfalo/metabolismo , Bovinos , Escherichia coli , Humanos , Microscopia de Fluorescência , Mitose , Fuso Acromático/metabolismo , Xenopus laevis
5.
New Phytol ; 227(6): 1681-1695, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31863702

RESUMO

Pits are regions in the cell walls of plant tracheary elements that lack secondary walls. Each pit consists of a space within the secondary wall called a pit chamber, and a modified primary wall called the pit membrane. The pit membrane facilitates transport of solutions between vessel cells and restricts embolisms during drought. Here we analyzed the role of an angiosperm-specific TPX2-like microtubule protein MAP20 in pit formation using Brachypodium distachyon as a model system. Live cell imaging was used to analyze the interaction of MAP20 with microtubules and the impact of MAP20 on microtubule dynamics. MAP20-specific antibody was used to study expression and localization of MAP20 in different cell types during vascular bundle development. We used an artificial microRNAs (amiRNA) knockdown approach to determine the function of MAP20. MAP20 is expressed during the late stages of vascular bundle development and localizes around forming pits and under secondary cell wall thickenings in metaxylem cells. MAP20 suppresses microtubule depolymerization; however, unlike the animal TPX2 counterpart, MAP20 does not cooperate with the γ-tubulin ring complex in microtubule nucleation. Knockdown of MAP20 causes bigger pits, thinner pit membranes, perturbed vasculature development, lower reproductive potential and higher drought susceptibility. We conclude that MAP20 may contribute to drought adaptation by modulating pit size and pit membrane thickness in metaxylem.


Assuntos
Brachypodium , Proteínas dos Microtúbulos , Proteínas de Plantas , Brachypodium/genética , Brachypodium/fisiologia , Parede Celular , Secas , Microtúbulos
6.
Cell Cycle ; 16(17): 1560-1561, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28767311
7.
Nat Cell Biol ; 19(6): 711-723, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28530657

RESUMO

Tumour-initiating cells, or cancer stem cells (CSCs), possess stem-cell-like properties observed in normal adult tissue stem cells. Normal and cancerous stem cells may therefore share regulatory mechanisms for maintaining self-renewing capacity and resisting differentiation elicited by cell-intrinsic or microenvironmental cues. Here, we show that miR-199a promotes stem cell properties in mammary stem cells and breast CSCs by directly repressing nuclear receptor corepressor LCOR, which primes interferon (IFN) responses. Elevated miR-199a expression in stem-cell-enriched populations protects normal and malignant stem-like cells from differentiation and senescence induced by IFNs that are produced by epithelial and immune cells in the mammary gland. Importantly, the miR-199a-LCOR-IFN axis is activated in poorly differentiated ER- breast tumours, functionally promotes tumour initiation and metastasis, and is associated with poor clinical outcome. Our study therefore reveals a common mechanism shared by normal and malignant stem cells to protect them from suppressive immune cytokine signalling.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Interferons/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Diferenciação Celular , Movimento Celular , Autorrenovação Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Humanas/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia , Fenótipo , Proteínas Repressoras/genética , Transdução de Sinais , Fatores de Transcrição/genética , Transfecção , Microambiente Tumoral
8.
J Cell Biol ; 216(4): 983-997, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28264915

RESUMO

The mitotic spindle consists of microtubules (MTs), which are nucleated by the γ-tubulin ring complex (γ-TuRC). How the γ-TuRC gets activated at the right time and location remains elusive. Recently, it was uncovered that MTs nucleate from preexisting MTs within the mitotic spindle, which requires the protein TPX2, but the mechanism basis for TPX2 action is unknown. Here, we investigate the role of TPX2 in branching MT nucleation. We establish the domain organization of Xenopus laevis TPX2 and define the minimal TPX2 version that stimulates branching MT nucleation, which we find is unrelated to TPX2's ability to nucleate MTs in vitro. Several domains of TPX2 contribute to its MT-binding and bundling activities. However, the property necessary for TPX2 to induce branching MT nucleation is contained within newly identified γ-TuRC nucleation activator motifs. Separation-of-function mutations leave the binding of TPX2 to γ-TuRC intact, whereas branching MT nucleation is abolished, suggesting that TPX2 may activate γ-TuRC to promote branching MT nucleation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Proteínas Nucleares/metabolismo , Animais , Centro Organizador dos Microtúbulos/metabolismo , Ligação Proteica/fisiologia , Fuso Acromático/metabolismo , Fuso Acromático/fisiologia , Tubulina (Proteína)/metabolismo , Xenopus laevis/metabolismo , Xenopus laevis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA