Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37623850

RESUMO

The implementation of nanotechnology in the field of plant tissue culture has demonstrated an interesting impact on in vitro plant growth and development. Furthermore, the plant tissue culture accompanying nanoparticles has been showed to be a reliable alternative for the biosynthesis of secondary metabolites. Herein, the effectiveness of zinc oxide nanoparticles (ZnONPs) on the growth of Delonix elata calli, as well as their phytochemical profiles, were investigated. Delonix elata seeds were collected and germinated, and then the plant species was determined based on the PCR product sequence of ITS1 and ITS4 primers. Afterward, the calli derived from Delonix elata seedlings were subjected to 0, 10, 20, 30, 40, and 50 mg/L of ZnONPs. The ZnONPs were biologically synthesized using the Ricinus communis aqueous leaf extract, which acts as a capping and reducing agent, and zinc nitrate solution. The nanostructures of the biogenic ZnONPs were confirmed using different techniques like UV-visible spectroscopy (UV), zeta potential measurement, Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Adding 30 mg/L of ZnONPs to the MS media (containing 2.5 µM 2,4-D and 1 µM BAP) resulted in the highest callus fresh weight (5.65 g) compared to the control and other ZnONP treatments. Similarly, more phenolic accumulation (358.85 µg/g DW) and flavonoid (112.88 µg/g DW) contents were achieved at 30 mg/L. Furthermore, the high-performance liquid chromatography (HPLC) analysis showed significant increments in gallic acid, quercetin, hesperidin, and rutin in all treated ZnONP calli compared to the control. On the other hand, the gas chromatography and mass spectroscopy (GC-MS) analysis of the calli extracts revealed that nine phytochemical compounds were common among all extracts. Moreover, the most predominant compound found in calli treated with 20, 30, 40, and 50 mg/L of ZnONPs was bis(2-ethylhexyl) phthalate, with percentage areas of 27.33, 38.68, 22.66, and 17.98%, respectively. The predominant compounds in the control and in calli treated with 10 mg/L of ZnONPs were octadecanoic acid, 2-propenyl ester and heptanoic acid. In conclusion, in this study, green ZnONPs exerted beneficial effects on Delonix elata calli and improved their production of bioactive compounds, especially at a dose of 30 mg/L.

2.
Molecules ; 28(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175076

RESUMO

Among biological methods, green synthesis of the nanomaterials using plant extracts was shown to be an environmentally friendly, economical, and simple approach. In the current study, the biogenic synthesis of silver nanoparticles (AgNPs) was achieved using the leaf extract of Hibiscus tiliaceus, in order to prevent the contamination of the tissue culture media and induce callus growth. The nanostructures of the fabricated AgNPs were characterized using UV-visible spectroscopy, Fourier transform infra-red spectra (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), zeta size, and zeta potential techniques. Our results indicate that The UV-vis spectrum of AgNPs exhibited an absorption band at 415 nm. The FTIR analysis identified the functional groups which could involve in the reduction of silver ions to AgNPs, this was also confirmed by the (hkl) diffraction peaks in the XRD diffractogram. Moreover, the TEM analysis showed a spherical nanoparticle with a size ranging from 21 and 26 nm. Thereafter, the potential antibacterial and antifungal activity of the biogenic AgNPs was evaluated against Bacillus pumilus and Alternaria alternata which were isolated from the in vitro culture media and identified based on 16S rDNA and ITS rDNA sequences, respectively. The results showed that the AgNPs significantly inhibited the growth of Alternaria alternata and Bacillus pumilus at all applied concentrations (5, 10, 20 and 40 mg/L). Compared to the control more fungal radial growth reduction (42.59%,) and bacterial inhibition (98.12%) were registered in the plates containing high doses of AgNPs (40 mg/L). Using Rumex nervosus explants, the biosynthesized AgNPs were tested for their impact to promote callus growth. The obtained results showed a significant effect of AgNPs on callus fresh weight at all applied doses. Moreover, AgNPs treatments showed a polymorphism of 12.5% which was detected by RAPD markers. In summary, the results revealed that AgNPs (40 mg/L) can be effectively added to the in vitro culture media for reducing microbial contamination and improving callus growth while greatly maintaining its genetic stability.


Assuntos
Nanopartículas Metálicas , Rumex , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Meios de Cultura , Técnica de Amplificação ao Acaso de DNA Polimórfico , Antibacterianos/farmacologia , Difração de Raios X , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Plants (Basel) ; 11(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214900

RESUMO

Abrus precatorius is considered to be a valuable source of natural products for the development of drugs against various diseases. Herein, the genome size and phytochemical compounds in the leaves and callus of A. precatorius were evaluated. The endangered A. precatorius was collected from the Al-Baha mountains, Saudi Arabia and identified based on the phylogenetic analysis of a DNA sequence amplified by ITS1 and ITS4 primers. The callus was induced by the culture of stem explants onto Murashige and Skoog medium (MS) supplemented with various combinations of 2,4-dichlorophenoxyacetic acid (2,4D) and 6-Benzylaminopurine (BAP). The callus with the highest fresh weight (2.03 g) was obtained in the medium containing 0.5µM BA and 5 µM 2,4-D after 8 weeks of culture; thus, the callus of this combination was selected for the genome estimation and phytochemical compound extraction. The genetic stability of the leaves from the donor as well as in the regenerated callus was analyzed by flow cytometry with optimized tomato (2C = 1.96 pg) as an external reference standard. The 2C DNA content was estimated to 1.810 pg ± 0.008 and 1.813 pg ± 0.004 for the leaves and callus, respectively. Then, the total phenol and total flavonoid contents in the methanol extract of the callus and leaves were measured using a spectrophotometer and the High-performance liquid chromatography (HPLC ) methods. The results showed that the methanolic extract of the leaves was higher in total phenols and total flavonoids than the callus extract. Finally, the extracts of callus and leaves were analyzed for phytochemical compound through the Gas chromatography and Mass spectroscopy (GC-MS). A total of 22 and 28 compounds were detected in the callus and leaves, respectively. The comparative analysis showed that 12 compounds of the secondary metabolites were present in both extracts.

4.
Biomed Res Int ; 2021: 6829806, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912896

RESUMO

Biogenic nanoparticles have potential roles in the growth and development of plants and animals as they are ecofriendly and free of chemical contaminants. In this study, we assessed the effects of phytomediated zinc oxide nanoparticles (ZnONPs) on shoot growth, biochemical markers, and antioxidant system response in Ochradenus arabicus, which is a medicinal plant. The shoot length and fresh and dry weights were found to be higher in groups with 5 and 10 mg/L ZnONPs than in the control. At high concentrations of ZnONPs (50, 100, and 300 mg/L), biomass was decreased in a concentration-dependent manner. The shoot number was observed to be highest at 50 mg/L among all applied concentrations of ZnONPs. The levels of the stress markers proline and TBARS were found to be higher in shoots treated with 100 and 300 mg/L ZnONPs than in the control as well as NP-treated shoots. The levels of antioxidant enzymes were significantly increased at high concentrations of nanoparticles compared with the control. Thus, synthesized phytomediated ZnONPs from shoots of O. arabicus and their application to the same organ of O. arabicus in vitro were found to be effective as a low concentration of nanoparticles promoted shoot growth, resulting in high biomass accumulation. Thus, using green nanotechnology, such endemic plants could be conserved in vitro and multiple shoots could be produced by reducing the phytohormone concentration for multiple uses, such as the production of potential secondary metabolites.


Assuntos
Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Resedaceae/efeitos dos fármacos , Óxido de Zinco/farmacologia , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Biomassa , Nanotecnologia/métodos , Oxirredução/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/metabolismo , Prolina/metabolismo , Resedaceae/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/farmacologia
5.
Sci Rep ; 11(1): 19136, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580362

RESUMO

Biosynthesized nanoparticles have played vital role recently, as suggested to be alternative to physical and chemical methods. In this study, biosynthesis of zinc oxide nanoparticles (ZnO NPs) were carried out using leaf extracts of Phoenix dactylifera L. and Zinc nitrate. The effect of ZnO nanoparticles on biomass and biochemical parameters was investigated. Biosynthesized ZnO nanostructure was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Which resulted in spherical shape with size ranging between 16 to 35 nm of Biosynthesized ZnO nanoparticles and UV absorption beak at 370.5 nm with clear peaks of functional groups. The impact of different concentrations (0.0 mg/L, 80 mg/L and 160 mg/L) of biosynthesized ZnO nanoparticles on biomass and bioactive compounds production of Juniperus procera in vitro was investigated. The results showed that, biosynthesized ZnO NPs (80 mg/L and 160 mg/L) concentrations were boosted the growth of J. Procera with significantly compared to non-treated plants in vitro. The highest concentration (160 mg/L) of ZnO NPs was enhanced the growth of plant at beginning period, one month later shoots became yellow and callus turned to be brownish. Moreover, the influence of ZnO NPs on phytochemical compounds in callus of Juniperus procera was examined using GC-MS analysis. The differences among treatments were recoded. Overall, zinc oxide nanoparticles substantially improved the growth of shoots and callus with increasing of biochemical parameters such as chlorophyll a, total phenolic and flavonoids contents, besides the total protein and, SOD, CAT and APX activity. ZnO NPs might be induced some phytochemical compounds as well as inhibit.

6.
Plants (Basel) ; 10(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34579340

RESUMO

Zincoxide nanoparticles (ZnO NPs) are among the most produced and used nanomaterials worldwide, and in recent times these nanoparticles have also been incorporate in plant science and agricultural research. The present study was planned to synthesize ZnO NPs biologically using Ochradenus arabicus leaves and examine their effect on the morphology and physiology properties of Maerua oblongifolia cultured in vitro. ZnO NPs were characterized by UV-visible spectroscopy (UV-vis), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy, which demonstrated hexagonal shape nanoparticles of size ranging from 10 to 50 nm. Thus, the study uncovered an efficient, eco-friendly and simple technique for biosynthesis of multifunctional ZnO NPs using Ochradenus arabicus following growth of Maerua oblongifolia shoots in different concentrations of ZnO NPs (0, 1.25, 2.5, 5, 10, or 20 mg L-1) in Murashige and Skoog medium. Remarkable increases in plant biomass, photosynthetic pigments, and total protein were recorded up to a concentration of 5 mg L-1; at the same time, the results demonstrated a significant reduction in lipid peroxidation levels with respect to control. Interestingly, the levels of proline and the antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) activities were increased significantly in response to all ZnO NP treatments. These findings indicate that bioengineered ZnO NPs play a major role in accumulation of biomass and stimulating the activities of antioxidant enzymes in plant tissues. Thus, green-synthesized ZnO NPs might be of agricultural and medicinal benefit owing to their impacts on plants in vitro.

7.
Plants (Basel) ; 10(7)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34371565

RESUMO

Genome size is one of the fundamental cytogenetic features of a species, which is critical for the design and initiation of any genome sequencing projects and can provide essential insights in studying taxonomy, cytogenetics, phylogenesis, and evolutionary studies. However, this key cytogenetic information is almost lacking in the endemic species Reseda pentagyna and the locally rare species Reseda lutea in Saudi Arabia. Therefore, genome size was analyzed by propidium iodide PI flow cytometry and compared to k-mer analysis methods. The standard method for genome size measures (flow cytometry) estimated the genome size of R. lutea and R. pentagyna with nuclei isolation MB01 buffer were found to be 1.91 ± 0.02 and 2.09 ± 0.03 pg/2 °C, respectively, which corresponded approximately to a haploid genome size of 934 and 1.022 Mbp, respectively. For validation, K-mer analysis was performed on both species' Illumina paired-end sequencing data from both species. Five k-mer analysis approaches were examined for biocomputational estimation of genome size: A general formula and four well-known programs (CovEST, Kmergenie, FindGSE, and GenomeScope). The parameter preferences had a significant impact on GenomeScope and Kmergenie estimates. While the general formula estimations did not differ considerably, with an average genome size of 867.7 and 896. Mbp. The differences across flow cytometry and biocomputational predictions may be due to the high repeat content, particularly long repetitive regions in both genomes, 71% and 57%, which interfered with k-mer analysis. GenomeScope allowed quantification of high heterozygosity levels (1.04 and 1.37%) of R. lutea and R. pentagyna genomes, respectively. Based on our observations, R. lutea may have a tetraploid genome or higher. Our results revealed fundamental cytogenetic information for R. lutea and R. pentagyna, which should be used in future taxonomic studies and whole-genome sequencing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA