Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(54): 81923-81937, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35739448

RESUMO

Copper nanoparticles are widely utilized in a variety of applications, including metal catalysts, semiconductors, heat transfer fluids in machine tools, and even in antibacterial medications. Forty mature healthy Westar rats were utilized in the current investigation and grouped randomly into four groups (n = 10 rats/group). Group I (G1) was kept as a control group, but G2, G3, and G4 were intraperitoneally injected with CuO NPs with a dose (5 mg, 10 mg, 25 mg/kg body weight/day) respectively for 9 days. Rats were sacrificed; then, the livers and kidneys were dissected and subjected to histopathological and immunohistochemical examination. Our findings of G2 and G3 revealed mild to moderate degenerative changes within the hepatic parenchyma, moderate blood vessel congestions, glycogen depletion, hemosiderosis, and microvesicular steatosis (fatty changes within the hepatocytes). In addition, at the level of kidney, our examination clarified moderate degenerations of the renal corpuscles and renal tubules with moderate swelling and congestions of the glomerulus with moderate vacuolations in the renal tubules lining epithelium. On the other hand, increasing the dose of CuO NPs, the toxicity became more obvious, where the liver of G4 revealed severe necrosis of hepatocytes with completely disorganizations of the hepatic rays, loss of the hepatic architectures, severe steatosis, severe hemosiderosis, sinusoidal dilatations with congestions, as well as severe fibrous tissue proliferation with anti-inflammatory cell infiltrations specially around portal triad with hyperplasia of bile duct. Meanwhile in kidney, G4 clarified severe necrosis and atrophy of the renal corpuscles with severe damage of Bowman's capsule leading to completely disorganization and loss of normal renal cortex architectures, severe congestion of the glomerulus, severe necrosis of the renal tubules with damage and sloughing for its lining epithelium, and severe hemorrhage between renal tubules. In addition, severe and diffuse caspase 3 immunoreactivity were observed within the hepatic and renal tissues of G4. The present investigation was concluded that the CuO NPs have a potential toxicological effect on the hepatic and renal tissues that may affect their functions.-->.


Assuntos
Hemossiderose , Nanopartículas Metálicas , Nanopartículas , Ratos , Masculino , Animais , Cobre/toxicidade , Caspase 3 , Hemossiderose/patologia , Fígado , Nanopartículas/toxicidade , Necrose/induzido quimicamente , Glicogênio , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Óxidos/farmacologia , Nanopartículas Metálicas/toxicidade
2.
Environ Toxicol Pharmacol ; 51: 124-130, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28236584

RESUMO

Zinc oxide nanoparticles (ZnO NPs) are widely used in industry and cosmetic products with promising investment in medical diagnosis and treatment. However, these particles may reveal a high potential risk for human health with no information about hepatotoxicity that might be associated with their exposure. The present work was carried out to investigate the histological and histochemical alterations induced in the hepatic tissues by naked 35nm ZnO NPs. Male Wistar albino rats were exposed to ZnO NPs at a daily dose of 2mg/kg for 21days. Liver biopsies from all rats under study were subjected to histopathological examinations. In comparison with the control rats, the following histological and histochemical alterations were demonstrated in the hepatic tissues of rats exposed to ZnO NPs: sinusoidal dilatation, Kupffer cells hyperplasia, lobular and portal triads inflammatory cells infiltration, necrosis, hydropic degeneration, hepatocytes apoptosis, anisokaryosis, karyolysis, nuclear membrane irregularity, glycogen content depletion and hemosidrosis. The findings of the present work might indicate that ZnO NPs have potential oxidative stress in the hepatic tissues that may affect the function of the liver. More work is needed to elucidate the toxicity and pathogenesis of zinc oxide nanoparticles on the vital organs.


Assuntos
Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Glicogênio/metabolismo , Fígado/efeitos dos fármacos , Nanopartículas/toxicidade , Óxido de Zinco/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hemossiderose/induzido quimicamente , Hemossiderose/metabolismo , Hemossiderose/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Nanopartículas/química , Necrose , Tamanho da Partícula , Ratos Wistar , Propriedades de Superfície , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA