Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1332414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38379774

RESUMO

Soybean is an important oilseed crop worldwide; however, it has a high sensitivity to temperature variation, particularly at the vegetative stage to the pod-filling stage. Temperature change affects physiochemical and genetic traits regulating the soybean agronomic yield. In this regard, the current study aimed to comparatively evaluate the effects of varying regimes of day and night temperatures (T1 = 20°C/12°C, T2 = 25°C/17°C, T3 = 30°C/22°C, T4 = 35°C/27°C, and T5 = 40°C/32°C) on physiological (chlorophyll, photosynthesis, stomatal conductance, transpiration, and membrane damage) biochemical (proline and antioxidant enzymes), genetic (GmDNJ1, GmDREB1G;1, GmHSF-34, GmPYL21, GmPIF4b, GmPIP1;6, GmGBP1, GmHsp90A2, GmTIP2;6, and GmEF8), and agronomic traits (pods per plant, seeds per plant, pod weight per plant, and seed yield per plant) of soybean cultivars (Swat-84 and NARC-1). The experiment was performed in soil plant atmosphere research (SPAR) units using two factorial arrangements with cultivars as one factor and temperature treatments as another factor. A significant increase in physiological, biochemical, and agronomic traits with increased gene expression was observed in both soybean cultivars at T4 (35°C/27°C) as compared to below and above regimes of temperatures. Additionally, it was established by correlation, principal component analysis (PCA), and heatmap analysis that the nature of soybean cultivars and the type of temperature treatments have a significant impact on the paired association of agronomic and biochemical traits, which in turn affects agronomic productivity. Furthermore, at corresponding temperature regimes, the expression of the genes matched the expression of physiochemical traits. The current study has demonstrated through extensive physiochemical, genetic, and biochemical analyses that the ideal day and night temperature for soybeans is T4 (35°C/27°C), with a small variation having a significant impact on productivity from the vegetative stage to the grain-filling stage.

2.
Front Plant Sci ; 13: 953451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507433

RESUMO

Drought and salinity stress severely inhibits the growth and productivity of crop plants by limiting their physiological processes. Silicon (Si) supplementation is considerd as one of the promising approaches to alleviate abiotic stresses such as drought and salinity. In the present study, a field experiment was conducted over two successive growth seasons (2019-20) to investigate the effect of foliar application of Si at two concentrations (1 and 2 kg Si ha-1) on the growth, yield and physiological parameters of three maize cultivars (ES81, ES83, and ES90) under three levels of irrigation salinity) [1000 (WS1), 2000 (WS2) and 3000 (WS3) mg L-1NaCl]. In this study, A trickle irrigation system was used. Si application significantly mitigated the harsh effects of salinity on growth and yield components of maize, which increased at all concentrations of Si. In irrigation with S3 salinity treatment, grain yield was decreased by 32.53%, however, this reduction was alleviated (36.19%) with the exogenous foliar application of Si at 2 kg Si ha-1. At salinity levels, Si application significantly increased maize grain yield (t ha-1) to its maximum level under WS of 1000 mg L-1, and its minimum level (Add value) under WS of 3000 mg L-1. Accordingly, the highest grain yield increased under Si application of 2 kg Si ha-1, regardless of salinity level and the cultivar ES81 achieved the highest level of tolerance against water salinity treatments. In conclusion, Application of Si at 2 kg Si ha-1 as foliar treatment worked best as a supplement for alleviating the adverse impacts of irrigation water salinity on the growth, physiological and yield parameters of maize.

3.
Saudi J Biol Sci ; 28(4): 2316-2322, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33911946

RESUMO

The usage of novel Plant Growth-Promoting Rhizobacteria (PGPR) as bioinoculant is a good opportunity for ecological farming practices to improve soil condition, quality of grain, crops' yield and biodiversity conservation. The purpose of recent research was focused to examine, isolate and characterize PGP bacteria that colonize the rhizosphere for the duration of the maize plant's seedling. For this purpose, 14 samples of soils and roots in the maize rhizosphere were collected from rock phosphate area of Hazara, Pakistan. Forty morphologically natural bacterial colonies have been extracted and tested for their PGP innovations and biocontrol residences and further recognized as plant production advancing rhizobacteria. To find the effective PGPR strains with numerous activities, an aggregate of 150 bacterial colonies were sequestered from different rhizospheric soils of the Hazara Pakistan rock phosphate area. These tested bacterial strains were subjected to biochemical description and in vitro screening for their plant growth-promoting qualities like generation of indole acetic acid (IAA), alkali (NH3), hydrogen cyanide (HCN), siderophores, catalases, proteases and pectinases. All the isolates of rhizobacteria showed IAA producing capacity, as well as found positive for catalase and HCN. The above results suggested that, in addition to biocontrol marketers, PGPR could be used as biofertilizers to substitute agro-chemicals in order to increase crop production. These microorganisms can therefore be further developed and used for greenhouse and discipline packages.

4.
Curr Issues Mol Biol ; 21: 73-98, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27489344

RESUMO

Various transcriptome studies have remained useful in unraveling the complexity of molecular pathways regulating the oil biochemical contents and fruit characteristics of agronomic value in olive. Genes networks associated with plant architect and abiotic stress tolerance have been constructed due to robust genomic data generated by the tools of genomics. This, familiarity will accelerate the breeding programmes in making the selection of high yielding olive genotypes promptly and efficiently. Moreover, comparative transcriptome studies for endogeneous enzymes at different expression sites explicate the contribution of various pathways in phenol and lipid oxidation in olive. Recently, non-targeted metabolomics and metabolic profiling techniques have not only made the understanding of metabolic changes easy but also elucidate biomarkers in fruits related to agronomic parameters and abiotic stresses. However, the alteration in the architectural build up of phenotypes auth-enticates the conservation of their potential genetic links that will invoke interest for future olive breeding.


Assuntos
Perfilação da Expressão Gênica , Olea/genética , Olea/metabolismo , Enzimas/genética , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas , Azeite de Oliva/metabolismo , Fenóis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidade
5.
Front Plant Sci ; 7: 1250, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27625658

RESUMO

A 2-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA), and triazoles (Tr) were applied. High temperature severely affected rice morphology, and also reduced leaf area, above-, and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

6.
Environ Sci Pollut Res Int ; 23(4): 3658-70, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26498803

RESUMO

Nitrogen (N) fertilizer is an important yield limiting factor for sunflower production. The correlation between yield components and growth parameters of three sunflower hybrids (Hysun-33, Hysun-38, Pioneer-64A93) were studied with five N rates (0, 60, 120, 180, 240 kg ha(-1)) at three different experimental sites during the two consecutive growing seasons 2008 and 2009. The results revealed that total dry matter (TDM) production and grain yield were positively and linearly associated with leaf area index (LAI), leaf area duration (LAD), and crop growth rate (CGR) at all three sites of the experiments. The significant association of yield with growth components indicated that the humid climate was most suitable for sunflower production. Furthermore, the association of these components can be successfully used to predict the grain yield under diverse climatic conditions. The application of N at increased rate of 180 kg ha(-1) resulted in maximum yield as compared to standard rate (120 kg ha(-1)) at all the experimental sites. In this way, N application rate was significantly correlated with growth and development of sunflower under a variety of climatic conditions. Keeping in view such relationship, the N dose can be optimized for sunflower crop in a particular region to maximize the productivity. Multilocation trails help to predict the input rates precisely while taking climatic variations into account also. In the long run, results of this study provides basis for sustainable sunflower production under changing climate.


Assuntos
Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes/análise , Helianthus/crescimento & desenvolvimento , Nitrogênio/análise , Biomassa , Folhas de Planta/crescimento & desenvolvimento
7.
Environ Sci Pollut Res Int ; 22(20): 15506-15, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26006072

RESUMO

The present study examined the effects of gibberellin semi-sensitive reduced height (Rht) alleles on wheat grain yield and quality under high temperature and drought stress during booting and anthesis stages. Near-isogenic lines (NILs) of winter wheat (Rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-8c, Rht-D1c, Rht-12) having background of Mercia and Maris Widgeon cultivars were compared under variable temperatures (day/night: 20/12, 27/19, 30/22, 33/25, 36/28, and 39/31 °C) and irrigation regimes. Pots were transferred to controlled thermal conditions (Saxcil growth chamber) during booting and anthesis stages and were maintained at field capacity (FC) or had water withheld. High temperature (>30 °C) and drought stress for seven consecutive days during booting and anthesis stages reduced the grain yield, while increased nitrogen (N) and sulphur (S) concentrations. A 50 % reduction in grain yield was fitted to have occurred at 37.4 °C for well-watered plants and at 31.4 °C for drought-stressed plants. The N and S concentrations were higher for severe dwarfs, whereas no significant differences were observed between tall and semi-dwarfs in Mercia. In the taller background (Maris Widgeon), N and S concentrations were significantly higher compared with that in Mercia. In Mercia, the severe dwarf Rht-D1c had higher Hagberg falling number (HFN) and sodium dodecyl sulphate (SDS) sedimentation volume. In both backgrounds, semi-dwarfs and severe dwarfs had higher HFN. Moreover, the SDS sedimentation volumes in Maris Widgeon were also higher than that in Mercia. Greater adaptability and improved grain quality traits suggested that severe dwarf Rht alleles are better able to enhance tolerance to high temperature and drought stress in wheat.


Assuntos
Triticum/genética , Alelos , Desidratação/genética , Secas , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genes de Plantas , Giberelinas/fisiologia , Temperatura Alta , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA