Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Diseases ; 11(4)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37987265

RESUMO

INTRODUCTION: Type 2 diabetes mellitus (T2DM) patients are at high risk of dyslipidemia, which in turn is associated with macrovascular diseases, such as heart diseases and stroke, and microvascular diseases, such as neuropathy and nephropathy. There are contradictory findings in the literature regarding the relationship between glycated hemoglobin (HbA1c) and the lipid profile among T2DM patients. This study was performed to investigate the association between HbA1c level and the lipid profile in elderly T2DM patients at a primary care hospital in Jeddah City, Saudi Arabia. METHODS: This study is a retrospective cross-sectional study conducted at the Prince Abdul Majeed Healthcare Center (PAMHC) in Jeddah, Saudi Arabia. The sociodemographic and clinical data of the T2DM patients who had visited the PAMHC from 1 January 2020 to 31 December 2021, were collected from the data registry of the PAMHC and analyzed for publication. RESULTS: The study included a total of 988 T2DM patients (53.3% male). Of the participants, 42.9% were aged between 55 and 64 years. Dyslipidemia parameters were presented as high LDL-c (in 60.3% cases), low HDL-c (in 39.8% cases), high triglycerides (in 34.9% cases), and high total cholesterol (in 34.8% cases). The correlation of HbA1c with total cholesterol (TC) and triglycerides (TGs) was positively significant, thereby highlighting the important link between glycemic control and dyslipidemia. A mean increase of 4.88 mg/dL and 3.33 mmHg in TG level and diastolic blood pressure, respectively, was associated with the male gender, in comparison to the female gender. However, the male gender was significantly associated with the reduction in the mean cholesterol level, BMI, HbA1c, HDL-c, and LDL-c by 11.49 mg/dL, 1.39 kg/m2, 0.31%, 7.47 mg/dL, and 5.6 mg/dL, respectively, in comparison to the female gender. CONCLUSIONS: The results of this study show that HbA1c was significantly associated with cholesterol and triglyceride levels in the T2DM patients included in the study. Our findings highlight the important relationship between glycemic control and dyslipidemia.

3.
Sci Rep ; 13(1): 4150, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914689

RESUMO

Actinobacteria obtained from the least explored Indian regions were studied for their ability to suppress meningitis-causing bacteria in nanoparticle form. Drug-resistant bacteria and long-term treatment with different medications make meningitis control complicated. Thus, new meningitis drugs are required to combat MDR bacteria. In this study, secondary metabolites isolated from actinomycetes strains, Microbacterium proteolyticum LA2(R) and Streptomyces rochei LA2(O), were employed to synthesize silver nanoparticles (AgNPs) at 37 °C for seven days incubation. UV-Vis spectroscopy, TEM, FTIR, and HPLC studies were used for the confirmation of the synthesis of AgNPs. Furthermore, these NPs demonstrated antibacterial and antibiofilm activities against meningitis-causing bacteria. The average size of LA2(R) and LA2(O) isolated secondary metabolites mediated AgNPs was observed to be 27 ± 1and 29 ± 2 nm by TEM analysis. FTIR study of RAgNPs and OAgNPs revealed that presence of peaks with positions of 1637.17 cm1 and 1636.10 cm1 for C=O amide group appearances in the amide I linkage. These NPs were effective against bacterial pathogens such as S. pneumoniae, H. influenzae, and N. meningitidis and confirmed by their MICs, i.e., 109.4, 120.60, and 138.80 µg/ml of RAgNPs and 105.80, 114.40 and 129.06 µg/ml of OAgNPs, respectively. Additionally, the production of biofilms is impeded by these nanoparticles on S. pneumoniae, H. influenzae, and N. meningitidis by 73.14%, 71.89% and 64.81%, respectively. These findings confirm the potential role of synthesized AgNPs against biofilm forming meningitis causing Multidrug resistance (MDR) microbes.


Assuntos
Actinobacteria , Actinomycetales , Meningite , Nanopartículas Metálicas , Streptomyces , Humanos , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/química , Biofilmes , Testes de Sensibilidade Microbiana
4.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36558907

RESUMO

Background: The coronavirus 2019 (COVID-19) disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus led to a global pandemic. HCQ and FPV were used early in the pandemic as a treatment modality for COVID-19. Various studies evaluated the HCQ and FPV effectiveness, based on the mortality endpoint and showed conflicting results. We hypothesize that analyzing the difference in the LOS as a significant endpoint would be of a major interest, especially for healthcare providers, to prevent a lengthy hospitalization and disease progression. Methods: This is a retrospective observational study, conducted via a medical chart review of COVD-19 patients who were admitted between April 2020 and March 2021 with a moderate to severe illness. The LOS endpoint was tested using the paired Wilcoxon signed-rank (WSR) model. Prior to using the WSR model, the balance between the HCQ and FPV groups, the propensity score matching, the LOS distribution, and the normality assumptions were tested. Two sensitivity statistical analyses were conducted to confirm the results (stratified log-rank test and U Welch test after transforming the LOS by the squared root values). Results: A total of 200 patients were included for the analysis: 83 patients in the HCQ group and 117 patients in the FPV group. Thirty-seven patients were matched in each group. The LOS data was positively skewed and violated the normality (Shapiro−Wilk p < 0.001) and had an unequal variance (Levene's test, p = 0.019). The WSR test showed no statistical significance in the LOS endpoint, with a median of −0.75 days (95% confidence interval: −4.0 to 2.5, p = 0.629), in favor of the HCQ group (four days), in comparison to seven days of the FPV group. The WSR findings were further confirmed with the stratified log rank test (p = 740) and the U Welch test (p = 391). Conclusions: The study concluded that the HCQ and FPV treatments have a comparable effectiveness in terms of the LOS in the moderate to severe COVID-19 patients. This study highlights the importance of analyzing the LOS as a relevant endpoint, in order to prevent the costs of a lengthy hospitalization and disease progression. The current study also emphasizes the importance of applying the appropriate statistical testing when dealing with two-sample paired data and analyzing non-parametric data such as the LOS.

5.
Int J Rheum Dis ; 25(9): 1013-1019, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35748059

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic systemic inflammatory disorder which mainly affects small joints, occurs most commonly in middle-aged adults, and can be fatal in severe cases. The exact etiology of RA remains unknown. However, uncontrolled expression of pro-inflammatory cytokines and chemokines can contribute to the pathogenesis of RA. AIM: In the current study, we assessed the potential of serum concentrations of interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, IL-8, and C-C motif chemokine ligand (CCL)5 as early predictive markers for RA. METHODS: In addition to clinical examination, blood samples were collected from 100 Saudi patients recently diagnosed with early RA for basic and serological tests, including rheumatoid factor (RF), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR). Sera of 32 healthy individuals were used as controls. Specific enzyme-linked immunosorbent assay was used to quantify the serum IL-1ß, IL-6, TNF-α, IL-8, and CCL5 levels in the samples. RESULTS: Our results indicated that RF, CRP, and ESR levels were higher in RA patients compared to controls. Furthermore, serum levels of IL-1ß, IL-6, IL-8, and CCL5, but not TNF-α, significantly increased in RA patients compared to controls. CONCLUSION: Overall, the findings suggested that IL-1ß, IL-6, IL-8, and CCL5 can be used as biomarkers in the early diagnosis of RA.


Assuntos
Artrite Reumatoide , Interleucina-6 , Adulto , Biomarcadores , Proteína C-Reativa/análise , Humanos , Interleucina-8 , Pessoa de Meia-Idade , Fator Reumatoide , Arábia Saudita , Fator de Necrose Tumoral alfa
6.
Saudi J Biol Sci ; 28(12): 7455-7459, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34867050

RESUMO

B-cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) are members of the tumor necrosis factor superfamily of cytokines and can induce B cell activation, differentiation, and antibody production via interaction with their receptors, including transmembrane activator, calcium modulator, and cyclophilin ligand interactor (TACI), B-cell maturation antigen (BCMA), and B-cell activating factor receptor (BAFF-R). Herein, we assessed the plasma protein levels of BAFF and APRIL in patients with asthma to determine whether their expression is correlated with total IgE production and examined the surface expression of BAFF/APRIL receptors on B cells. Blood samples were collected from 47 patients with controlled asthma symptoms and 20 healthy normal controls, and plasma levels of APRIL, BAFF, and total IgE protein were quantified by corresponding ELISA assays. Furthermore, lymphocytes were isolated and B cells were analyzed for the presence of BAFF-R, BCMA, and TACI receptors using flow cytometry. Our results showed that IgE, BAFF, and APRIL plasma levels were markedly increased in patients with asthma compared with healthy controls. Moreover, expression of BAFF-R and BCMA, but not that of TACI, was significantly increased in patients with asthma compared with healthy controls. Overall, the findings suggest BAFF and APRIL as key mediators of asthma, and determination of their plasma levels may be useful in monitoring asthma symptoms and treatment response.

7.
mBio ; 12(6): e0256921, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34696596

RESUMO

Streptococcus pneumoniae is an asymptomatic colonizer of the nasopharynx, but it is also one of the most important bacterial pathogens of humans, causing a wide range of mild to life-threatening diseases. The basis of the pneumococcal transition from a commensal to a parasitic lifestyle is not fully understood. We hypothesize that exposure to host catecholamine stress hormones is important for this transition. In this study, we demonstrated that pneumococci preexposed to a hormone released during stress, norepinephrine (NE), have an increased capacity to translocate from the nasopharynx into the lungs compared to untreated pneumococci. Examination of NE-treated pneumococci revealed major alterations in metabolic profiles, cell associations, capsule synthesis, and cell size. By systemically mutating all 12 two-component and 1 orphan regulatory systems, we also identified a unique genetic regulatory circuit involved in pneumococcal recognition and responsiveness to human stress hormones. IMPORTANCE Microbes acquire unique lifestyles under different environmental conditions. Although this is a widespread occurrence, our knowledge of the importance of various host signals and their impact on microbial behavior is not clear despite the therapeutic value of this knowledge. We discovered that catecholamine stress hormones are the host signals that trigger the passage of Streptococcus pneumoniae from a commensal to a parasitic state. We identify that stress hormone treatment of this microbe leads to reductions in cell size and capsule synthesis and renders it more able to migrate from the nasopharynx into the lungs in a mouse model of infection. The microbe requires the TCS09 protein for the recognition and processing of stress hormone signals. Our work has particular clinical significance as catecholamines are abundant in upper respiratory fluids as well as being administered therapeutically to reduce inflammation in ventilated patients, which may explain why intubation in the critically ill is a recognized risk factor for the development of pneumococcal pneumonia.


Assuntos
Translocação Bacteriana , Pulmão/microbiologia , Pneumonia Pneumocócica/microbiologia , Streptococcus pneumoniae/fisiologia , Animais , Feminino , Humanos , Camundongos , Nasofaringe/microbiologia , Norepinefrina/metabolismo , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/fisiopatologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/crescimento & desenvolvimento , Estresse Fisiológico
8.
Artigo em Inglês | MEDLINE | ID: mdl-34200934

RESUMO

The human population is currently facing the third and possibly the worst pandemic caused by human coronaviruses (CoVs). The virus was first reported in Wuhan, China, on 31 December 2019 and spread within a short time to almost all countries of the world. Genome analysis of the early virus isolates has revealed high similarity with SARS-CoV and hence the new virus was officially named SARS-CoV-2. Since CoVs have the largest genome among all RNA viruses, they can adapt to many point mutation and recombination events; particularly in the spike gene, which enable these viruses to rapidly change and evolve in nature. CoVs are known to cross the species boundaries by using different cellular receptors. Both animal reservoir and intermediate host for SARS-CoV-2 are still unresolved and necessitate further investigation. In the current review, different aspects of SARS-CoV-2 biology and pathogenicity are discussed, including virus genetics and evolution, spike protein and its role in evolution and adaptation to novel hosts, and virus transmission and persistence in nature. In addition, the immune response developed during SARS-CoV-2 infection is demonstrated with special reference to the interplay between immune cells and their role in disease progression. We believe that the SARS-CoV-2 outbreak will not be the last and spillover of CoVs from bats will continue. Therefore, establishing intervention approaches to reduce the likelihood of future CoVs spillover from natural reservoirs is a priority.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , China/epidemiologia , Evolução Molecular , Humanos , Pandemias
9.
Free Radic Biol Med ; 134: 215-228, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30658083

RESUMO

Microbes can have multiple enzymes that are able to catalyse the same enzymatic reactions but may differ in structure. These are known as isozymes. It is assumed that isozymes have the same functional role for cells. Contrary to this assumption, we hypothesised that isozymes can confer different functions for microbial cells despite catalysing the same reactions. To test this hypothesis, we studied the role of superoxide dismutases (SOD) in Klebsiella pneumoniae, the causative agent of several nosocomial and community-acquired infections, in infection relevant assays. SODs are responsible for detoxification of toxic superoxide radicals. K. pneumoniae genome contains three superoxide dismutase genes, sodA, sodB, and sodC coding for Mn-, Fe- and CuZn- co-factored SODs, respectively. By creating and testing single, double, and triple SOD mutants, we investigated the regulatory interactions among SOD and determined the role of each isozyme in oxidative stress resistance, biofilm formation, cell morphology, metabolism, and in vivo colonization and persistence. Our results demonstrate that SOD isozymes in K. pneumoniae have unique roles beyond oxidative stress resistance, and there is a regulatory interplay among SODs.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/crescimento & desenvolvimento , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Animais , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Feminino , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Nasofaringe/microbiologia , Superóxido Dismutase/classificação , Superóxido Dismutase/genética
10.
BMC Microbiol ; 14: 180, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24996423

RESUMO

BACKGROUND: Host signals are being shown to have a major impact on the bacterial phenotype. One of them is the endogenously produced catecholamine stress hormones, which are also used therapeutically as inotropes. Recent work form our laboratories have found that stress hormones can markedly increase bacterial growth and virulence. This report reveals that Streptococcus pneumoniae, a commensal that can also be a major cause of community acquired and nosocomial pneumonia, is highly inotrope responsive. Therapeutic levels of the stress hormone norepinephrine increased pneumococcal growth via a mechanism involving provision of iron from serum-transferrin and inotrope uptake, as well as enhancing expression of key genes in central metabolism and virulence. Collectively, our data suggests that Streptococcus pneumoniae recognises host stress as an environmental cue to initiate growth and pathogenic processes. RESULTS: Effects of a clinically attainable concentration of norepinephrine on S. pneumoniae pathogenicity were explored using in vitro growth and virulence assays, and RT-PCR gene expression profiling of genes involved in metabolism and virulence.We found that norepinephrine was a potent stimulator of growth, via a mechanism involving norepinephrine-delivery of transferrin-iron and internalisation of the inotrope. Stress hormone exposure also markedly increased biofilm formation. Importantly, gene profiling showed that norepinephrine significantly enhanced expression of genes involved in central metabolism and host colonisation. Analysis of the response of the pneumococcal pspA and pspC mutants to the stress hormone showed them to have a central involvement in the catecholamine response mechanism. CONCLUSIONS: Collectively, our evidence suggests that the pneumococcus has mechanisms to recognise and process host stress hormones to augment its virulence properties. The ability to respond to host stress signals may be important for the pneumococcal transition from colonization to invasion mode, which is key to its capacity to cause life-threatening pneumonia, septicaemia and meningitis.


Assuntos
Biofilmes/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Norepinefrina/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos , Fatores de Virulência/biossíntese , Biofilmes/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Streptococcus pneumoniae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA