Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(12): e22491, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076163

RESUMO

The main goal of this research is to present the concept of enhancing heat transfer within emerging technology. To achieve this, tiny metal and nonmetal particles ranging from 1 to 100 nm in size are introduced into base liquids. These nanoscale particles are utilized to improve the thermal performance of the liquids, leading to what are termed nanofluids. The utilization of these fluids and the examination of the flow of thin films have valuable implications across various sectors such as engineering, technology, and industries. This research focuses on analyzing the convective flow behavior of nanofluids, specifically, graphene oxide-ethylene glycol (GO-EG) and graphene oxide-water (GO-W) on a moving surface. The study investigates the impacts of magnetic fields and varying viscosity. By making use of the thermophysical characteristics of the base fluid and the nanofluid, as well as implementing a similarity transformation within the fundamental equations that govern energy and momentum, we formulate a 5th order nonlinear ordinary differential equation (NODE) to describe the velocity profile. This is combined with a second-order NODE that describes the distribution of temperature. To solve this derived NODE, we employ a method known as the Homotopy Analysis Method (HAM) for analytical solution. The impact of the relevant factors, Prandtl number, including magnetic field parameter, thickness of the liquid, couple stress parameter, temperature distribution, dynamic viscosity, and Eckert number, on the skin friction, velocity profile, and Nusselt's number are interrogated through graphical representation. The velocity field exhibits a decline as the couple stress parameter, magnetic field parameter, liquid thickness, and dynamic viscosity experience an increase. Conversely, the temperature field displays a rise as the Eckert number and dynamic viscosity experience an increase. To ensure the convergence of the issue, dual solutions of the problem are employed, and this is verified through the utilization graphs and tables. Due to the considerable challenge encountered in heat transfer applications for cooling diverse equipment and devices across industries like automotive, microelectronics, defense, and manufacturing, there is a strong expectation that this theoretical methodology could make a favorable contribution towards enhancing heat transfer efficiency. This improvement is sought to meet the requirements of the manufacturing and engineering sectors.

2.
Heliyon ; 9(11): e21807, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027973

RESUMO

Micro polar fluids have a wide variety of applications in biomedical, manufacturing, and technical activities, such as nuclear structures, biosensors, electronic heating and cooling, etc. The aim of this study is to investigate the properties of heat transfer on a magnetohydrodynamic free convection movement of micro polar fluid over an exponentially stretchable curved surface. The flow is non-turbulent and steady. The effects of Joule heating, varying thermal conductivity, irregular heat reservoir, and non-linear radiation are anticipated. The modelled PDEs are converted to ODEs via transformation, and the integration problems are then addressed using ND-Solve method along with bvp4c package. It is observed that velocity is reduced and the micro rotation field is increased as the micro rotation parameter is increased. It is witnessed that the temperature of the fluid enhances as the Eckert number is augmented. The velocity is increasing function of the curvature parameter while the decreases with increasing magnetic factor. The distribution of temperature is improved by a rise in temperature-dependent thermal conductivity characteristic. It is investigated that as the values of temperature ratio, Prandtl number, and the Biot number are increased the temperature distribution is enhanced. For the stability of the numerical results, the mean square residue error (MSRE) and total mean square residue error (TMSRE) are computed. For the confirmation of the present analysis, a comparison is done with the published study and excellent settlement is found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA