Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (149)2019 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-31380852

RESUMO

The development of renewable sources of liver tissue is required to improve cell-based modelling, and develop human tissue for transplantation. Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) represent promising sources of human liver spheres. We have developed a serum free and defined method of cellular differentiation to generate three-dimensional human liver spheres formed from human pluripotent stem cells. A potential limitation of the technology is the production of dense spheres with dead material inside. In order to circumvent this, we have employed agarose microwell technology at defined cell densities to control the size of the 3D spheres, preventing the generation of apoptotic and/or necrotic cores.  Notably, the spheres generated by our approach display liver function and stable phenotype, representing a valuable resource for basic and applied scientific research. We believe that our approach could be used as a platform technology to develop further tissues to model and treat human disease and in the future may permit the generation of human tissue with complex tissue architecture.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Fígado/citologia , Células-Tronco Pluripotentes/fisiologia , Contagem de Células , Diferenciação Celular , Meios de Cultura Livres de Soro , Humanos , Esferoides Celulares
2.
Arch Toxicol ; 92(10): 3117-3129, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30155720

RESUMO

Liver disease is an escalating global health issue. While liver transplantation is an effective mode of therapy, patient mortality has increased due to the shortage of donor organs. Developing renewable sources of human liver tissue is therefore attractive. Pluripotent stem cell-derived liver tissue represents a potential alternative to cadaver derived hepatocytes and whole organ transplant. At present, two-dimensional differentiation procedures deliver tissue lacking certain functions and long-term stability. Efforts to overcome these limiting factors have led to the building of three-dimensional (3D) cellular aggregates. Although enabling for the field, their widespread application is limited due to their reliance on variable biological components. Our studies focused on the development of 3D liver tissue under defined conditions. In vitro generated 3D tissues exhibited stable phenotype for over 1 year in culture, providing an attractive resource for long-term in vitro studies. Moreover, 3D derived tissue provided critical liver support in two animal models, including immunocompetent recipients. Therefore, we believe that our study provides stable human tissue to better model liver biology 'in the dish', and in the future may permit the support of compromised liver function in humans.


Assuntos
Transplante de Fígado/métodos , Fígado/citologia , Células-Tronco Pluripotentes/citologia , Engenharia Tecidual/métodos , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Endoderma/citologia , Feminino , Hepatectomia , Humanos , Fígado/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Pluripotentes/fisiologia , Esferoides Celulares/citologia , Fatores de Tempo , Alicerces Teciduais
3.
Artigo em Inglês | MEDLINE | ID: mdl-29786551

RESUMO

Recent advances in the isolation of tissue-resident adult stem cells and the identification of inductive factors that efficiently direct differentiation of human pluripotent stem cells along specific lineages have facilitated the development of high-fidelity modelling of several tissues in vitro Many of the novel approaches have employed self-organizing three-dimensional (3D) culturing of organoids, which offer several advantages over conventional two-dimensional platforms. Organoid technologies hold great promise for modelling diseases and predicting the outcome of drug responses in vitro Here, we outline the historical background and some of the recent advances in the field of three-dimensional organoids. We also highlight some of the current limitations of these systems and discuss potential avenues to further benefit biological research using three-dimensional modelling technologies.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células-Tronco Pluripotentes/fisiologia , Linhagem da Célula , Humanos
4.
J Vis Exp ; (121)2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28287600

RESUMO

Human pluripotent stem cells (hPSCs) possess great value for biomedical research. hPSCs can be scaled and differentiated to all cell types found in the human body. The differentiation of hPSCs to human hepatocyte-like cells (HLCs) has been extensively studied, and efficient differentiation protocols have been established. The combination of extracellular matrix and biological stimuli, including growth factors, cytokines, and small molecules, have made it possible to generate HLCs that resemble primary human hepatocytes. However, the majority of procedures still employ undefined components, giving rise to batch-to-batch variation. This serves as a significant barrier to the application of the technology. To tackle this issue, we developed a defined system for hepatocyte differentiation using human recombinant laminins as extracellular matrices in combination with a serum-free differentiation process. Highly efficient hepatocyte specification was achieved, with demonstrated improvements in both HLC function and phenotype. Importantly, this system is easy to scale up using research and GMP-grade hPSC lines promising advances in cell-based modelling and therapies.


Assuntos
Hepatócitos/citologia , Células-Tronco Pluripotentes/citologia , Contagem de Células , Diferenciação Celular , Matriz Extracelular/metabolismo , Humanos
5.
Arch Toxicol ; 90(7): 1757-61, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26979076

RESUMO

Freshly isolated human adult hepatocytes are considered to be the gold standard tool for in vitro studies. However, primary hepatocyte scarcity, cell cycle arrest and the rapid loss of cell phenotype limit their widespread deployment. Human embryonic stem cells and induced pluripotent stem cells provide renewable sources of hepatocyte-like cells (HLCs). Despite the use of various differentiation methodologies, HLCs like primary human hepatocytes exhibit unstable phenotype in culture. It has been shown that the functional capacity can be improved by adding back elements of human physiology, such as cell co-culture or through the use of natural and/or synthetic surfaces. In this study, the effect of fluid shear stress on HLC performance was investigated. We studied two important liver functions, cytochrome P450 drug metabolism and serum protein secretion, in static cultures and those exposed to fluid shear stress. Our study demonstrates that fluid shear stress improved Cyp1A2 activity by approximately fivefold. This was paralleled by an approximate ninefold increase in sensitivity to a drug, primarily metabolised by Cyp2D6. In addition to metabolic capacity, fluid shear stress also improved hepatocyte phenotype with an approximate fourfold reduction in the secretion of a foetal marker, alpha-fetoprotein. We believe these studies highlight the importance of introducing physiologic cues in cell-based models to improve somatic cell phenotype.


Assuntos
Diferenciação Celular , Hepatócitos/fisiologia , Células-Tronco Embrionárias Humanas/fisiologia , Estresse Fisiológico/fisiologia , Albuminas/metabolismo , Fenômenos Biomecânicos , Técnicas de Cultura de Células , Sobrevivência Celular/fisiologia , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Ensaio de Imunoadsorção Enzimática , Hepatócitos/citologia , Hepatócitos/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , alfa-Fetoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA