Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1378834, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784807

RESUMO

The cultivation system requires that the approach providing biomass for all types of metabolic analysis is of excellent quality and reliability. This study was conducted to enhance the efficiency and yield of antifungal substance (AFS) production in Streptomyces yanglinensis 3-10 by optimizing operation conditions of aeration, agitation, carbon source, and incubation time in a fermenter. Dissolved oxygen (DO) and pH were found to play significant roles in AFS production. The optimum pH for the production of AFS in S. yanglinensis 3-10 was found to be 6.5. As the AFS synthesis is generally thought to be an aerobic process, DO plays a significant role. The synthesis of bioactive compounds can vary depending on how DO affects growth rate. This study validates that the high growth rate and antifungal activity required a minimum DO concentration of approximately 20% saturation. The DO supply in a fermenter can be raised once agitation and aeration have been adjusted. Consequently, DO can stimulate the development of bacteria and enzyme production. A large shearing effect could result from the extreme agitation, harming the cell and deactivating its products. The highest inhibition zone diameter (IZD) was obtained with 3% starch, making starch a more efficient carbon source than glucose. Temperature is another important factor affecting AFS production. The needed fermentation time would increase and AFS production would be reduced by the too-low operating temperature. Furthermore, large-scale fermenters are challenging to manage at temperatures that are far below from room temperature. According to this research, 28°C is the ideal temperature for the fermentation of S. yanglinensis 3-10. The current study deals with the optimization of submerged batch fermentation involving the modification of operation conditions to effectively enhance the efficiency and yield of AFS production in S. yanglinensis 3-10.

2.
Front Microbiol ; 15: 1385493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659983

RESUMO

The escalating global threat of antimicrobial resistance necessitates prospecting uncharted microbial biodiversity for novel therapeutic leads. This study mines the promising chemical richness of Bacillus licheniformis LHG166, a prolific exopolysaccharide (EPSR2-7.22 g/L). It comprised 5 different monosaccharides with 48.11% uronic acid, 17.40% sulfate groups, and 6.09% N-acetyl glucosamine residues. EPSR2 displayed potent antioxidant activity in DPPH and ABTS+, TAC and FRAP assays. Of all the fungi tested, the yeast Candida albicans displayed the highest susceptibility and antibiofilm inhibition. The fungi Aspergillus niger and Penicillium glabrum showed moderate EPSR2 susceptibility. In contrast, the fungi Mucor circinelloides and Trichoderma harzianum were resistant. Among G+ve tested bacteria, Enterococcus faecalis was the most susceptible, while Salmonella typhi was the most sensitive to G-ve pathogens. Encouragingly, EPSR2 predominantly demonstrated bactericidal effects against both bacterial classes based on MBC/MIC of either 1 or 2 superior Gentamicin. At 75% of MBC, EPSR2 displayed the highest anti-biofilm activity of 88.30% against B. subtilis, while for G-ve antibiofilm inhibition, At 75% of MBC, EPSR2 displayed the highest anti-biofilm activity of 96.63% against Escherichia coli, Even at the lowest dose of 25% MBC, EPSR2 reduced biofilm formation by 84.13% in E. coli, 61.46% in B. subtilis. The microbial metabolite EPSR2 from Bacillus licheniformis LHG166 shows promise as an eco-friendly natural antibiotic alternative for treating infections and oxidative stress.

3.
J Adhes Dent ; 26(1): 53-64, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38329120

RESUMO

PURPOSE: This study investigated and compared the bond strengths, microleakage, microgaps, and marginal adaptation of self-adhesive resin composites (SAC) to dentin with or without universal adhesives. MATERIALS AND METHODS: Dentin surfaces of 75 molars were prepared for shear and microtensile bond strength testing (SBS and µTBS). Silicon molds were used to build up direct restorations using the following materials to form 5 groups: 1. Surefil One; 2. Prime&Bond active Universal Adhesive + Surefil One; 3. Vertise Flow; 4. OptiBond Universal + Vertise Flow; 5. Scotchbond Universal + Filtek Z500 (control group). Bonded specimens were thermocycled 10,000x before being tested either for SBS or µTBS using a universal testing machine at a crosshead speed of 0.5 mm/min. Direct mesial and distal class-II cavities were created on 100 sound premolars, with the gingival margin of distal cavities placed below CEJ and restored according to the five groups. After thermocycling, microleakage scores were assessed following immersion of restored premolars in 2% methylene blue dye for 24 h, while marginal gaps and adaptation percentages were investigated on epoxy resin replicas under SEM at magnifications of 2000X and 200X, respectively. Results were statistically analyzed with parametric and non-parametric tests as applicable, with a level of significance set at α = 0.05. RESULTS: Bond strengths, microleakage scores, microgaps, and percent marginal adaptation of Surefil One and Vertise Flow were significantly (p < 0.001) inferior to the control group. Dentin preconditioning with universal adhesives significantly increased the study parameter outcomes of Surefil One and Vertise Flow, yet they were still significantly below the performance of the control group. CONCLUSION: Conventional resin composite outperformed the SAC whether applied solely or in conjunction with their corresponding universal adhesives.


Assuntos
Colagem Dentária , Cimentos de Resina , Bis-Fenol A-Glicidil Metacrilato/química , Cimentos de Resina/química , Adesivos Dentinários/química , Restauração Dentária Permanente/métodos , Cimentos Dentários , Dentina , Resinas Compostas/química , Teste de Materiais
4.
Antibiotics (Basel) ; 12(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37887215

RESUMO

Pseudomonas aeruginosa is notorious for its ability to develop a high level of resistance to antimicrobial agents. Resistance-nodulation-division (RND) efflux pumps could mediate drug resistance in P. aeruginosa. The present study aimed to evaluate the antibacterial and anti-efflux activities of cinnamon essential oil either alone or combined with ciprofloxacin against drug resistant P. aeruginosa originated from human and animal sources. The results revealed that 73.91% of the examined samples were positive for P. aeruginosa; among them, 77.78% were of human source and 72.73% were recovered from animal samples. According to the antimicrobial resistance profile, 48.73% of the isolates were multidrug-resistant (MDR), 9.2% were extensive drug-resistant (XDR), and 0.84% were pan drug-resistant (PDR). The antimicrobial potential of cinnamon oil against eleven XDR and one PDR P. aeruginosa isolates was assessed by the agar well diffusion assay and broth microdilution technique. The results showed strong antibacterial activity of cinnamon oil against all tested P. aeruginosa isolates with inhibition zones' diameters ranging from 34 to 50 mm. Moreover, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of cinnamon oil against P. aeruginosa isolates ranged from 0.0562-0.225 µg/mL and 0.1125-0.225 µg/mL, respectively. The cinnamon oil was further used to evaluate its anti-efflux activity against drug-resistant P. aeruginosa by phenotypic and genotypic assays. The cartwheel test revealed diminished efflux pump activity post cinnamon oil exposure by two-fold indicating its reasonable impact. Moreover, the real-time quantitative polymerase chain reaction (RT-qPCR) results demonstrated a significant (p < 0.05) decrease in the expression levels of MexA and MexB genes of P. aeruginosa isolates treated with cinnamon oil when compared to the non-treated ones (fold changes values ranged from 0.4204-0.7474 for MexA and 0.2793-0.4118 for MexB). In conclusion, we suggested the therapeutic use of cinnamon oil as a promising antibacterial and anti-efflux agent against drug-resistant P. aeruginosa.

5.
Front Microbiol ; 14: 1271733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869654

RESUMO

Introduction: Although carbapenemases are frequently reported in resistant A. baumannii clinical isolates, other chromosomally mediated elements of resistance that are considered essential are frequently underestimated. Having a wide substrate range, multidrug efflux pumps frequently underlie antibiotic treatment failure. Recognizing and exploiting variations in multidrug efflux pumps and penicillin-binding proteins (PBPs) is an essential approach in new antibiotic drug discovery and engineering to meet the growing challenge of multidrug-resistant Gram-negative bacteria. Methods: A total of 980 whole genome sequences of A. baumannii were analyzed. Nucleotide sequences for the genes studied were queried against a custom database of FASTA sequences using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) system. The correlation between different variants and carbapenem Minimum Inhibitory Concentrations (MICs) was studied. PROVEAN and I-Mutant predictor suites were used to predict the effect of the studied amino acid substitutions on protein function and protein stability. Both PsiPred and FUpred were used for domain and secondary structure prediction. Phylogenetic reconstruction was performed using SANS serif and then visualized using iTOL and Phandango. Results: Exhibiting the highest detection rate, AdeB codes for an important efflux-pump structural protein. T48V, T584I, and P660Q were important variants identified in the AdeB-predicted multidrug efflux transporter pore domains. These can act as probable targets for designing new efflux-pump inhibitors. Each of AdeC Q239L and AdeS D167N can also act as probable targets for restoring carbapenem susceptibility. Membrane proteins appear to have lower predictive potential than efflux pump-related changes. OprB and OprD changes show a greater effect than OmpA, OmpW, Omp33, and CarO changes on carbapenem susceptibility. Functional and statistical evidence make the variants T636A and S382N at PBP1a good markers for imipenem susceptibility and potential important drug targets that can modify imipenem resistance. In addition, PBP3_370, PBP1a_T636A, and PBP1a_S382N may act as potential drug targets that can be exploited to counteract imipenem resistance. Conclusion: The study presents a comprehensive epidemiologic and statistical analysis of potential membrane proteins and efflux-pump variants related to carbapenem susceptibility in A. baumannii, shedding light on their clinical utility as diagnostic markers and treatment modification targets for more focused studies of candidate elements.

6.
Cureus ; 15(8): e44219, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37767256

RESUMO

OBJECTIVE:  "Metabolic syndrome" (MetS) is a set of abnormalities that may be risk factors for cardiovascular disease (CVD) and diabetes. The current study sought to (1) determine MetS prevalence and (2) examine Adiponectin and ANGPTL8 levels in connection to MetS components and CVDs and diabetes risk in females with MetS. METHODS: A total of 350, 20-35-year-old Saudi females were studied. Waist circumference (WC), body mass index (BMI), glucose, HbA1c, insulin, lipid profiles, and blood pressure (BP) were examined for MetS. ANGPTL8 and Adiponectin were also measured. RESULTS: The patients were classified into two groups, namely MetS and non-MetS, according to the criteria established by the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATPIII). We examined biomarker and anthropometric results between these groups. One hundred forty-four of 350 female participants (41.2%) had MetS, with a mean age of 30.5 years. Fasting blood glucose (FBG), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), ANGPTL8, adiponectin, and insulin resistance (IR) were statistically significant differences observed between the two groups. BP, BMI, WC, and Atherogenic Index of Plasma (AIP) all changed significantly (P ≤0.05). Correlation studies linked MetS components to higher ANGPTL-8 and reduced adiponectin. The levels of ANGPTL8 were shown to be influenced by the increase in FBG, TG, BP, IR, and AIP (P < 0.05). Factors such as FBG, BMI, WC, and IR have been found to have an inverse relationship with adiponectin levels. CONCLUSION: 41.2% out of 350 Saudi females at Taibah University in the Madinah region had MetS, medium CVD risk, and slightly elevated BMI, TG, WC, and BP. To lower their risk of CVD and diabetes later in life, overweight young women should be evaluated for MetS. FBG and TG were substantially associated with ANGPTL8 while reducing adiponectin was associated with elevated TG and BP. Our findings may lead to ANGPTL8 and adiponectin's possible predictive function for CVD in early MetS in females.

7.
J Infect Public Health ; 16(11): 1837-1847, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769584

RESUMO

Infectious diseases present a global challenge, requiring accurate diagnosis, effective treatments, and preventive measures. Artificial intelligence (AI) has emerged as a promising tool for analysing complex molecular data and improving the diagnosis, treatment, and prevention of infectious diseases. Computer-aided detection (CAD) using convolutional neural networks (CNN) has gained prominence for diagnosing tuberculosis (TB) and other infectious diseases such as COVID-19, HIV, and viral pneumonia. The review discusses the challenges and limitations associated with AI in this field and explores various machine-learning models and AI-based approaches. Artificial neural networks (ANN), recurrent neural networks (RNN), support vector machines (SVM), multilayer neural networks (MLNN), CNN, long short-term memory (LSTM), and random forests (RF) are among the models discussed. The review emphasizes the potential of AI to enhance the accuracy and efficiency of diagnosis, treatment, and prevention of infectious diseases, highlighting the need for further research and development in this area.

8.
Biology (Basel) ; 12(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37508454

RESUMO

The main hypothesis of the present research is investigating the efficacy of titanium oxide nanoparticles (TiO2-NPs) to prevent the growth of fungal strains when applied on leather under an experimental study. Therefore, fifteen fungal strains were isolated from a deteriorated historical manuscript (papers and leathers) and identified by traditional methods and ITS sequence analysis, including Aspergillus chevalieri (one isolate), A. nidulans (two strains), A. flavus (four strains), A. cristatus (one strain), A. niger (one strain), Paecilomyces fulvus (two strains), Penicillium expansum (two strains), and P. citrinum (two strains). The enzymes cellulase, amylase, pectinase, and gelatinase, which play a crucial role in biodegradation, were highly active in these fungal strains. TiO2-NPs were formed using the cell-free filtrate of the probiotic bacterial strain, Lactobacillus plantarum, and characterized. Data showed that the TiO2-NPs were successfully formed with a spherical shape and anatase phase with sizes of 2-8 nm. Moreover, the EDX analysis revealed that the Ti and O ions occupied the main component with weight percentages of 41.66 and 31.76%, respectively. The in vitro cytotoxicity of TiO2-NPs toward two normal cell lines, WI38 and HFB4, showed a low toxicity effect against normal cells (IC50 = 114.1 ± 8.1µg mL-1 for Wi38, and 237.5 ± 3.5µg mL-1 for HFB4). Therefore, concentrations of 100 µg mL-1 were used to load on prepared leather samples before inoculation with fungal strain P. expansum AL1. The experimental study revealed that the loaded TiO2-NPs have the efficacy to inhibit fungal growth with percentages of 73.2 ± 2.5%, 84.2 ± 1.8%, and 88.8 ± 0.6% after 7, 14, and 21 days, respectively. Also, the analyses including SEM, FTIR-ART, color change, and mechanical properties for leather inoculated with fungal strain AL1 in the absence of NPs showed high damage aspects compared to those inoculated with fungal strains in the presence of TiO2-NPs.

9.
Life (Basel) ; 13(5)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37240772

RESUMO

Streptococcus pneumoniae is a notorious Gram-positive pathogen present asymptomatically in the nasophayrnx of humans. According to the World Health Organization (W.H.O), pneumococcus causes approximately one million deaths yearly. Antibiotic resistance in S. pneumoniae is raising considerable concern around the world. There is an immediate need to address the major issues that have arisen as a result of persistent infections caused by S. pneumoniae. In the present study, subtractive proteomics was used in which the entire proteome of the pathogen consisting of 1947 proteins is effectively decreased to a finite number of possible targets. Various kinds of bioinformatics tools and software were applied for the discovery of novel inhibitors. The CD-HIT analysis revealed 1887 non-redundant sequences from the entire proteome. These non-redundant proteins were submitted to the BLASTp against the human proteome and 1423 proteins were screened as non-homologous. Further, databases of essential genes (DEGG) and J browser identified almost 171 essential proteins. Moreover, non-homologous, essential proteins were subjected in KEGG Pathway Database which shortlisted six unique proteins. In addition, the subcellular localization of these unique proteins was checked and cytoplasmic proteins were chosen for the druggability analysis, which resulted in three proteins, namely DNA binding response regulator (SPD_1085), UDP-N-acetylmuramate-L-alanine Ligase (SPD_1349) and RNA polymerase sigma factor (SPD_0958), which can act as a promising potent drug candidate to limit the toxicity caused by S. pneumoniae. The 3D structures of these proteins were predicted by Swiss Model, utilizing the homology modeling approach. Later, molecular docking by PyRx software 0.8 version was used to screen a library of phytochemicals retrieved from PubChem and ZINC databases and already approved drugs from DrugBank database against novel druggable targets to check their binding affinity with receptor proteins. The top two molecules from each receptor protein were selected based on the binding affinity, RMSD value, and the highest conformation. Finally, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses were carried out by utilizing the SWISS ADME and Protox tools. This research supported the discovery of cost-effective drugs against S. pneumoniae. However, more in vivo/in vitro research should be conducted on these targets to investigate their pharmacological efficacy and their function as efficient inhibitors.

10.
Plants (Basel) ; 12(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36840305

RESUMO

Many studies have focused on how leaf litter depth affects seed germination and seedling growth because the seedling stage is the most vulnerable portion of a plant's life cycle. Invasive plants with the most severe ecological consequences are those that modify ecosystems, and this can occur through the formation of thick litter layers which can suppress the emergence, survival, and recruitment of native plant seedlings; in addition, in some cases, these litter layers can suppress invasive plant seedling recruitment. Prosopis juliflora is a thorny shrub that is native to arid and semi-arid portions of North America, parts of South America, and the Caribbean. It has invaded millions of hectares around the world, including Saudi Arabia. The objective of this study is to evaluate whether P. juliflora leaf litter reduces the recruitment of its own seedlings under greenhouse and field conditions in Saudi Arabia. In both the greenhouse and the field, the number of days to first emergence increased and germination percentage decreased with increasing litter depth. With the 1, 2, and 4 cm litter depth treatments, the number of viable seeds generally decreased, with no emergence, germination, or viable seeds detected for the 8 cm litter depth treatment. Results of this study reveal that increasing the depth of P. juliflora leaf litter suppresses the survival and recruitment of its own seedlings. Future search should assess the actual mechanisms through which P. juliflora seeds are suppressed, the role of allelopathic compounds in this process, and whether viable seeds are dormant and will persist in the soil seed bank.

11.
J Chem Neuroanat ; 129: 102236, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36709005

RESUMO

A growing amount of evidence in the last few years has begun to unravel that non-coding RNAs have a myriad of functions in gene regulation. Intensive investigation on non-coding RNAs (ncRNAs) has led to exploring their broad role in neurodegenerative diseases (NDs) owing to their regulatory role in gene expression. RNA sequencing technologies and transcriptome analysis has unveiled significant dysregulation of ncRNAs attributed to their biogenesis, upregulation, downregulation, aberrant epigenetic regulation, and abnormal transcription. Despite these advances, the understanding of their potential as therapeutic targets and biomarkers underpinning detailed mechanisms is still unknown. Advancements in bioinformatics and molecular technologies have improved our knowledge of the dark matter of the genome in terms of recognition and functional validation. This review aims to shed light on ncRNAs biogenesis, function, and potential role in NDs. Further deepening of their role is provided through a focus on the most recent platforms, experimental approaches, and computational analysis to investigate ncRNAs. Furthermore, this review summarizes and evaluates well-studied miRNAs, lncRNAs and circRNAs concerning their potential role in pathogenesis and use as biomarkers in NDs. Finally, a perspective on the main challenges and novel methods for the future and broad therapeutic use of ncRNAs is offered.


Assuntos
MicroRNAs , Doenças Neurodegenerativas , Humanos , Biomarcadores , Epigênese Genética , MicroRNAs/genética , Doenças Neurodegenerativas/genética , RNA não Traduzido/genética , Genoma
12.
Molecules ; 27(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432115

RESUMO

An in silico approach applying computer-simulated models helps enhance biomedicines by sightseeing the pharmacology of potential therapeutics. Currently, an in silico study combined with in vitro assays investigated the antimicrobial ability of Limoniastrum monopetalum and silver nanoparticles (AgNPs) fabricated by its aid. AgNPs mediated by L. monopetalum were characterized using FTIR, TEM, SEM, and DLS. L. monopetalum metabolites were detected by QTOF-LCMS and assessed using an in silico study for pharmacological properties. The antibacterial ability of an L. monopetalum extract and AgNPs was investigated. PASS Online predictions and the swissADME web server were used for antibacterial activity and potential molecular target metabolites, respectively. Spherical AgNPs with a 68.79 nm average size diameter were obtained. Twelve biomolecules (ferulic acid, trihydroxy-octadecenoic acid, catechin, pinoresinol, gallic acid, myricetin, 6-hydroxyluteolin, 6,7-dihydroxy-5-methoxy 7-O-ß-d-glucopyranoside, methyl gallate, isorhamnetin, chlorogenic acid, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-3-yl 6-O-(6-deoxy-ß-l-mannopyranosyl)-ß-d-glucopyranoside) were identified. The L. monopetalum extract and AgNPs displayed antibacterial effects. The computational study suggested that L. Monopetalum metabolites could hold promising antibacterial activity with minimal toxicity and an acceptable pharmaceutical profile. The in silico approach indicated that metabolites 8 and 12 have the highest antibacterial activity, and swissADME web server results suggested the CA II enzyme as a potential molecular target for both metabolites. Novel therapeutic agents could be discovered using in silico molecular target prediction combined with in vitro studies. Among L. Monopetalum metabolites, metabolite 12 could serve as a starting point for potential antibacterial treatment for several human bacterial infections.


Assuntos
Nanopartículas Metálicas , Plumbaginaceae , Humanos , Prata/farmacologia , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia
13.
Front Chem ; 10: 1020387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36426099

RESUMO

Ertapenem is a member of carbapenem antibiotics used for the treatment of moderate-to-severe intra-abdominal, urinary tract, acute pelvic, and post-surgical gynecologic infections. The antibacterial activity of ertapenem is mediated through binding to penicillin-binding proteins which results in inhibiting the cross-linking of the peptidoglycan layer of the bacterial cell wall. Therefore, ertapenem can be labeled with technetium-99m (99mTc), a gamma emitter radionuclide, for the diagnosis of deep-seated bacterial infections, such as urinary tract, intra-abdominal, osteomyelitis, and post-surgical gynecologic infections. The labeling procedure was carried out by varying the reaction conditions, such as the amount of the ligand and reducing agent, pH, reaction time and temperature, and radioactivity. At optimized reaction conditions more than 93% 99mTc-ertapenem radioconjugate was obtained. 99mTc-ertapenem was found 90% intact in saline medium up to 6 h, while 88% intact in human blood serum up to 3 h. Biodistribution study showed target-to-non-target ratios of 2.91 ± 0.19, 2.39 ± 0.31, and 1.23 ± 0.22 in S. aureus, E. coli, and turpentine oil-infected rat models, respectively. The SPECT scintigraphy showed high uptake of 99mTc-ertapenem in bacterial-infected abscesses, and low counts were recorded in normal and turpentine oil-inflamed tissues. In conclusion, 99mTc-ertapenem can be a potent infection-imaging agent, which can diagnosis deep-seated bacterial infections at early stage but need further pre-clinical evaluation in variety of infection models.

14.
Cureus ; 14(9): e28686, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36199656

RESUMO

BACKGROUND: Thyroid hormones have substantial effects on blood pressure (BP) and renal function as they influence the glomerular filtration rate (GFR). Maintaining healthy BP and preventing premature development of nephropathy necessitates taking steps. OBJECTIVES: The aim of this study was to explore the association between BP, GFR, and thyroid-stimulating hormone (TSH) levels in hypothyroid patients at King Abdulaziz University Hospital, Jeddah, Saudi Arabia. METHODS: A retrospective record review study of all hypothyroid patients from June 1, 2010 to June 6, 2020. The medical records of 1,181 adult patients were reviewed, and 157 met the criteria. All patients aged >18 years who were diagnosed with hypothyroidism and were on levothyroxine therapy, were included in this study. RESULTS: More than half of the participants were female (83.4%). There was no significant correlation between TSH and systolic BP (P= 0.6), or TSH and diastolic BP (P=0.8), while there was a positive correlation between TSH and creatinine (r=0.4, P=0.001) and a negative correlation between TSH and GFR (r=-0.2, P=0.01). CONCLUSIONS: We found no association between BP and TSH, while creatinine correlated directly and GFR inversely with TSH. Follow-up renal function should be a target for physicians in hypothyroid patients to prevent premature complications.

15.
Front Genet ; 13: 952689, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276974

RESUMO

This study investigated the prevalence, antibiogram, virulence, extended-spectrum ß-lactamases (ESBLs), and non-ß-lactam encoding genes of Proteus species isolated from infected dogs in Ismailia province, Egypt. The study was conducted on 70 fecal swabs collected from dogs with diarrhea for bacteriological identification of Proteus spp. The positive isolates were evaluated for antibiotic susceptibility, molecular tests of virulence, ESBLs, and non-ß-lactam encoding genes. Prevalence of Proteus spp. was 35.7% (25/70), including Proteus mirabilis (n = 23) and Proteus vulgaris (n = 2). The Proteus spp. prevalence revealed diversity, higher in males than females, in ages < 12 weeks. Investigation of antimicrobial resistance was found against penicillin and amoxicillin (100%), amoxicillin-clavulanic acid (32%), cephalosporins: cefotaxime and ceftazidime (36%), and monobactam: aztreonam (28%) as ESBLs, in addition to tetracycline (32%) and trimethoprim sulfamethoxazole (100%). The strains retrieved by PCR revealed ureC, zapA, and rsbA virulence genes with variant prevalence as 92%, 60%, and 52%, respectively. In addition, the recovered strains contained ESBL genes with a dramatic variable prevalence of 100%, 92%, 36%, and 32%, to bla TEM, bla SHV, bla CTX-M, and bla OXA-1, respectively, and non ß-lactam encoding genes with a prevalence of 100%, 48%, 44%, 20%, and 12%, to sul1, tetA, intI1, qnrA, and aadA1. Moreover, 28% (7/25) of recovering strains were MDR (multidrug-resistant) up to four classes of antimicrobials, and 48% (12/25) of the examined strains were MDR up to three antimicrobial classes. In conclusion, to the best of our knowledge, our study could be the first report recording MDR Proteus spp. in dogs in Egypt.

16.
Microb Pathog ; 171: 105739, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055570

RESUMO

Gut microbial dysbiosis during the development of Hepatitis C virus and liver-related diseases is not well studied. Nowadays, HCV and liver cirrhosis are the major concerns that cause gut bacterial alteration, which leads to dysbiosis. For this purpose, the present study was aimed at correlating the gut bacterial community of the control group in comparison to HCV and liver cirrhotic patients. A total of 23 stool samples were collected, including control (9), liver cirrhotic (8), and HCV (6). The collected samples were subjected to 16 S rRNA Illumina gene sequencing. In comparison with control, a significant gut bacterial alteration was observed in the progression of HCV and liver cirrhosis. Overall, Firmicutes were significantly abundant in the whole study. No significant difference was observed in the alpha diversity of the control and patient studies. Additionally, the beta diversity based on non-metric multidimensional scaling (NMDS) has a significant difference (p = 0.005) (ANOSIM R2 = 0.14) in all groups. The discriminative results based on the LEfSe tool revealed that the HCV-infected patients had higher Enterobacteriaceae and Enterobacterial, as well as Lactobacillus and Bacilli in comparison than the liver-cirrhotic patients. These taxa were significantly different from the control group (p < 0.05). Regarding prospects, a detailed analysis of the function through metagenomics and transcriptomics is needed.


Assuntos
Microbioma Gastrointestinal , Hepatite C , Hepatopatias , Bactérias/genética , Disbiose/microbiologia , Enterobacteriaceae/genética , Hepacivirus/genética , Hepatite C/complicações , Humanos , Cirrose Hepática , Projetos Piloto , RNA Ribossômico 16S/genética
17.
Microorganisms ; 10(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014052

RESUMO

Vaccines are vital for prevention and control of mycoplasma diseases. The exploration of a vaccine candidate for the development of a vaccine is imperative. The present study envisages the evaluation of immune and oxidative response against an adjuvanted, sonicated antigen of Mycoplasma capricolum subsp. capripneumonia in male Angora rabbits (1 year old, 2 kg) divided in four groups, each having six animals. Group 1 was the healthy control and received 1 mL PBS via subcutaneous route. Group 2 was administered 1 mL of saponin-adjuvanted and -sonicated antigen, Group 3 was given 1 mL of montanide ISA 50-adjuvanted and-sonicated antigen, and Group 4 was given 1 mL of standard vaccine via subcutaneous route. Animals were evaluated for cellular and humoral immune response and oxidative parameters at 0, 7, 14, 21, and 28 days of the study. Total leukocytic, neutrophilic, and basophilic counts showed a significant (p < 0.05) increase in vaccinated groups compared to the healthy group on most of the intervals. TNF-α levels were significantly (p < 0.05) higher in the Group 2 than the Group 1 at all the time intervals and more comparable to Group 4 than Group 3. IL-10 levels were significantly (p < 0.05) higher in vaccinated groups compared to the healthy group on days 14, 21, and 28, but were lower in Group 3 than in Group 2 and Group 4. More hypersensitivity as inflammation and histopathological cellular infiltration in the ear was produced in Group 2 and Group 4 than in Group 3. IgG levels were significantly (p < 0.05) higher in Group 2 and Group 4 than in Group 3 on days 14 and 21. Antibody titers were comparatively higher in Group 4, followed by Group 2 and 3, than Group 1. Significantly (p < 0.05) higher oxidant and lower antioxidant values were noted in Group 2 and 4 compared to Group 3 and Group 1 on most of the intervals. The TLC and antibody titer showed increasing trend throughout the trial, whereas TNF-α, IgG, L, M and E started decreasing from day 14, and IL-10, N and B started decreasing from day 21. This study concludes that the saponin-adjuvanted and-sonicated antigen induces comparatively higher immune response than montanide but is associated with oxidative and inflammatory reactions.

18.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014377

RESUMO

The current study aimed to produce synbiotic cheese, adding inulin and Bifidobacterium animalis subsp. lactis as prebiotics and probiotics, respectively. The physicochemical analysis, minerals and organic acids content, sensory evaluation, and probiotic count of the cheese were performed during the ripening. The significant effect of inulin (p ≤ 0.01) was found during the ripening period, and changes in physiochemical composition, minerals, and organic acid contents were also observed. Scanning electron microscopy (SEM) of the cheese revealed that inulin could improve the cheese structure. Meanwhile, inulin increased the likeliness of the cheese, and its probiotic viability remained above 107 colony forming unit (CFU) per gram during ripening.


Assuntos
Bifidobacterium animalis , Queijo , Probióticos , Simbióticos , Animais , Búfalos , Queijo/análise , Inulina/farmacologia , Leite/microbiologia
20.
Front Vet Sci ; 9: 905962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873700

RESUMO

Multilocus sequence typing (MLST) was used to study the genetic diversity and population structure of 48 Candida albicans (C. albicans) isolates from the udder or genital tract of apparently healthy or diseased camels. This study aimed also to determine the frequency of C. albicans isolates in the genital tract and udder of healthy or diseased female dromedary camels. A total of 240 mature dromedary camels (230 females and 10 males) were categorized based on the clinical examination of gentile tract and udder into five groups [fertile females (n = 70), infertile females (n = 115), healthy udder (n = 15), mastitis (n = 30), and fertile males (n = 10)]. Swabs were collected from male and female genital tracts of dromedary camels and milk samples were collected from healthy and diseased udders. C. albicans was isolated from 20% of the samples. The frequency of isolation was significantly higher (p < 0.00001) in disease camels (75%) compared with apparently healthy camels (25%). Most of C. albicans was isolated from infertile female genitalia (62.50%) which was significantly higher than that isolated from fertile female genitalia (16.67%). Multilocus sequence (MLS) analysis identified seven different diploid sequence types (DSTs) including DST2, DST50, DST62, DST69, DST124, DST142, and DST144. The most frequently identified DTS was DST69 (13/48) which significantly higher (p ≤ 0.05) than DST2, DST62, and DST124. The frequency of identification of DST50, DST142, and DST 144 was significantly higher (p ≤ 0.05) than DST62. DST62 and DST124 were isolated only from diseased camels. DST62 was isolated only from mastitic milk. DST124 was isolated only from infertile female genitalia. The percentage of DST50 and DST 142 was significantly higher in diseased camels (infertile females) than in the apparently healthy ones (fertile females). DST2 and DST50 were isolated only from female genitalia of apparent health and diseased camels. The C. albicans isolated from diseased camels had significantly higher biofilm formation, hydrophobicity, phospholipase, proteinase, and hemolysin activities compared with the isolates from apparent healthy camels. All isolates were sensitive to amphotericin B, itraconazole, micafungin, posaconazole and voriconazole. In conclusion, the present study represents the first molecular typing of C. albicans in samples isolated from milk and the genital tract of the dromedary camel. MLST is a useful tool for studying the epidemiology and evolution of C. albicans. Early identification of Candida species and attention to Candida virulence factors and their antifungal susceptibility patterns is very important for establishing strategies to control and/or prevent candidiasis by novel therapeutic management. Amphotericin B, itraconazole, micafungin, posaconazole, or voriconazole can be efficient in treatment of candidiasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA