RESUMO
Selenium enhances the cellular antioxidant capacity and alleviates oxidative stress. We investigated the transcriptional and enzymatic activities of selenium-dependent glutathione peroxidase 1 and thioredoxin reductase 1 (TrxR1), and levels of glutathione, hydrogen peroxide, lipid peroxides, and protein carbonyls in primary passage 5 (P5) and senescent passage 25 (P25) and 30 (P30) fibroblasts. Cells were incubated in either standard Dulbecco growth medium (CM1) containing normal plasma selenium levels (0.8 µmol/l), or in CM2, CM3, and CM4 containing 3 µmol/l (5 µmol/l for TrxR1) sodium selenite, L-hydroxyselenomethionine, or Se-methylselenocysteine, respectively. Gene transcripts and activities of both investigated enzymes as well as the levels of reduced glutathione were significantly increased in CM2-, CM3-, and CM4-incubated senescent P25 and P35 cells compared against those incubated in CM1. In congruence, although all oxidative stress parameters including oxidized glutathione were significantly lower in CM2-, CM3-, and CM4-incubated senescent cells compared against those incubated in CM1, such reductions were of significantly higher magnitude in CM3 and CM4 cells compared against those in CM2. In conclusion, organic L-hydroxyselenomethionine and Se-methylselenocysteine are equally more potent at alleviating oxidative stress in senescent cells than inorganic sodium selenite, and thus could be beneficial for use in elderly subjects and those with oxidative stress-associated disease.
Assuntos
Selênio , Idoso , Antioxidantes/metabolismo , Fibroblastos , Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Estresse Oxidativo , Selênio/farmacologia , Selenito de Sódio/farmacologia , Tiorredoxina Redutase 1/metabolismoRESUMO
There is a paucity of detailed data related to the effect of senescence on the mitochondrial antioxidant capacity and redox state of senescent human cells. Activities of TCA cycle enzymes, respiratory chain complexes, hydrogen peroxide (H2O2), superoxide anions (SA), lipid peroxides (LPO), protein carbonyl content (PCC), thioredoxin reductase 2 (TrxR2), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPx1), glutathione reductase (GR), reduced glutathione (GSH), and oxidized glutathione (GSSG), along with levels of nicotinamide cofactors and ATP content were measured in young and senescent human foreskin fibroblasts. Primary and senescent cultures were biochemically identified by monitoring the augmented cellular activities of key glycolytic enzymes including phosphofructokinase, lactate dehydrogenase, and glycogen phosphorylase, and accumulation of H2O2, SA, LPO, PCC, and GSSG. Citrate synthase, aconitase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase, and complex I-III, IIIII, and IV activities were significantly diminished in P25 and P35 cells compared to P5 cells. This was accompanied by significant accumulation of mitochondrial H2O2, SA, LPO, and PCC, along with increased transcriptional and enzymatic activities of TrxR2, SOD2, GPx1, and GR. Notably, the GSH/GSSG ratio was significantly reduced whereas NAD+/NADH and NADP+/NADPH ratios were significantly elevated. Metabolic exhaustion was also evident in senescent cells underscored by the severely diminished ATP/ADP ratio. Profound oxidative stress may contribute, at least in part, to senescence pointing at a potential protective role of antioxidants in aging-associated disease.