Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35055549

RESUMO

This study investigated the concentrations of air pollutants (NO, NO2, NOx, SO2, CO, O3, PM10, and PM2.5) at three sites with different traffic loads (work, residential, and traffic sites) before, during, and after the COVID-19 lockdown. The main objective of this study was to evaluate the effects and associated potential pollution control implications of the lockdown on the quality of ambient air at three selected sites in the urban area of Riyadh City. The average concentrations of NO, NO2, NOx, and CO decreased during the lockdown period by 73%, 44%, 53%, and 32% at the work site; 222%, 85%, 100%, and 60% at the residential site; and 133%, 60%, 101%, and 103% at the traffic site relative to the pre-lockdown period, respectively. The average concentration of O3 increased by 6% at the work site, whereas the concentration of SO2 increased by 27% at the residential site and decreased by 6.5% at the work site. The changes in PM10 and PM2.5 varied and did not exhibit a clear pattern. The air quality index (AQI) results indicated that the contribution to "undesired" air quality by O3 was 35.29% of the lockdown period at the work site while contributions to undesired air quality by PM10 and PM2.5 were 75.6% and 100% at the work site, 94.5% and 100% at the residential site, and 96.7% and 100% at the traffic site, respectively. The findings of this study are useful for devising effective urban pollution abatement policies. Applying control measures comparable to the lockdown measures over one week will result in a decrease of approximately 19% and 15% in CO mean concentration and 25% and 18% in NO2 mean concentration at residential and traffic sites, respectively.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Material Particulado/análise , SARS-CoV-2
2.
Polymers (Basel) ; 13(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34503025

RESUMO

Self-Compacting Concrete (SCC) is a unique kind of concrete that tends to consolidate in terms of its weight. In this study, the prime target is to investigate the durability properties of SCC developed using eco-friendly economical waste binding materials as partial replacement to costly cement. This circular economy concept will not only help in the development of green concrete but will also help to improve the climatic condition by reducing the use and production of cement. An economical design methodology has been applied to produce environmentally friendly construction material. This research focuses on the application of Alum Sludge (AS) and Brick Dust (BD) in Self-Compacting Concrete (SCC). Both materials are waste materials containing binding properties. Performance of SCC developed using these two materials was tested considering mechanical properties of concrete using the destructive testing technique. Results showed that BD and AS can be utilized for up to 12% and 9% of replacement of cement, respectively, to achieve equal or higher compressive, tensile, and flexural strength. The application of BD and AS has demonstrated a subsequent improvement of SCC's mechanical properties, i.e., compressive, tensile, and flexural strength. This study will help the production of composite green materials with the help of eco-friendly and economical waste materials for sustainable infrastructure development.

3.
Bioresour Technol ; 341: 125796, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34454232

RESUMO

The environmental footprints of H2productionviacatalytic gasification of wheat straw using straw-derived biochar catalysts were examined. The functional unit of 1 kg of H2was adopted in the system boundaries, which includes 5 processes namely biomass collection and pre-treatment units (P1), biochar catalyst preparation using fast pyrolysis unit (P2), two-stage pyrolysis-gasification unit (P3), products separation unit (P4), and H2distribution to downstream plants (P5). Based on the life-cycle assessment, the hot spots in this process were identified, the sequence was as follows: P4 > P2 > P1 > P3 > P5. The end-point impacts score for the process was found to be 93.4017 mPt. From benchmarking analysis, the proposed straw-derived biochar catalyst was capable of offering almost similar catalytic performance with other metal-based catalysts with a lower environmental impact.


Assuntos
Carvão Vegetal , Triticum , Biomassa , Hidrogênio , Pirólise
4.
Polymers (Basel) ; 13(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209639

RESUMO

Polymer composites have been identified as the most innovative and selective materials known in the 21st century. Presently, polymer concrete composites (PCC) made from industrial or agricultural waste are becoming more popular as the demand for high-strength concrete for various applications is increasing. Polymer concrete composites not only provide high strength properties but also provide specific characteristics, such as high durability, decreased drying shrinkage, reduced permeability, and chemical or heat resistance. This paper provides a detailed review of the utilization of polymer composites in the construction industry based on the circular economy model. This paper provides an updated and detailed report on the effects of polymer composites in concrete as supplementary cementitious materials and a comprehensive analysis of the existing literature on their utilization and the production of polymer composites. A detailed review of a variety of polymers, their qualities, performance, and classification, and various polymer composite production methods is given to select the best polymer composite materials for specific applications. PCCs have become a promising alternative for the reuse of waste materials due to their exceptional performance. Based on the findings of the studies evaluated, it can be concluded that more research is needed to provide a foundation for a regulatory structure for the acceptance of polymer composites.

5.
Polymers (Basel) ; 13(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921659

RESUMO

Numerous environmental issues arise as a result of a linear economy strategy: reserves become scarce and end up in landfills and as greenhouse gases. Utilizing waste as a resource or shifting towards a circular economy are among the effective strategies for addressing these issues. To track this shift, appropriate measures that concentrate on sustainable development while taking practical contexts into consideration are required. In this paper, we utilize plastic wastes as a replacement for bitumen for reuse aiming at a circular economy. The use of plastic waste materials, i.e., plastic bottles (PET) and gas pipes (PE) in asphalt materials as a bitumen modifier was studied through series of experimental lab test methods. Marshall samples were prepared using a conventional Marshall method containing five different percentages (0%, 5%, 10%, 15%, and 20%) of plastic content by total weight of bitumen. Samples were tested after 1 and 30 days and the result shows that the stability of plastic-modified asphalt concrete was increased after 30 days, while still meeting standard criteria with plastic contents up to 20%. Moreover, the addition of waste plastic in road construction is a very effective strategy for reusing plastic waste, which also provides economic and social benefits for a sustainable approach to road pavements.

6.
Polymers (Basel) ; 13(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924677

RESUMO

Limited research work is available in the literature for the theoretical estimates of axial compressive strength of columns reinforced with fiber reinforced polymer (FRP) rebars. In the present work, an experimental database of 278 FRP-reinforced concrete (RC) compression members was established from the literature to recommend an empirical model that can accurately predict the axial strength (AS) of GFRP-RC specimens. An initial assessment of 13 different previously anticipated empirical models was executed to achieve a general form of the AS model. Finally, a new empirical equation for forecasting the AS of GFRP-RC short columns was proposed using the curve fitting and regression analysis technique. The performance of the proposed empirical model over the previous experimental database represented its higher accuracy as related to that of other models. For the further justification of the anticipated model, a numerical model of GFRP-RC columns was simulated using ABAQUS and a wide parametric study of 600 GFRP-RC samples was executed to generate a numerical database and investigate the influence of various parameters using numerical and empirical models. The comparison between theoretical and numerical predictions with R2 = 0.77 indicted that the anticipated empirical model is accurate enough to apprehend the AS of FRP-RC specimens.

7.
Materials (Basel) ; 13(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143305

RESUMO

Green revolution and high carbon footprint concepts have attracted the development of a green and sustainable environment. This work endeavors to investigate the behavior of recycled aggregate geopolymer concrete (RAGC) developed with four different types of effluents to develop sustainability in the construction industry and to produce an eco-friendly environment. Each of the types of effluents was used by completely replacing the freshwater in RAGC to examine its influence on compressive strength (CS), chloride ion migration (CIM), split tensile strength (STS), and resistance to the sulfuric acid attack of RAGC at various testing ages. The test outputs portray that the effluent obtained from the textile mill performed well for the CS (25% higher than the control mix) and STS (17% higher than the control mix) of RAGC. Similarly, the highest mass loss of RAGC due to the acid attack (41% higher than control mix) and the highest CIM (29% higher than control mix) were represented by the RAGC mix made with effluent obtained from fertilizer mill. The statistical analysis indicated no significant influence of using textile mill effluent (TE), fertilizer mill effluent (FE), and sugar mill effluent (SE) on the STS, CIM, and mass loss due to acid attack while it presented a significant influence on the CS of various mixes. Therefore, this investigation solidly substantiates the acceptability of studied types of effluents for the fabrication of eco-friendly green materials.

8.
Materials (Basel) ; 13(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784652

RESUMO

To simulate today's complex tribo-contact scenarios, a methodological breakdown of a complex design problem into simpler sub-problems is essential to achieve acceptable simulation outcomes. This also helps to manage iterative, hierarchical systems within given computational power. In this paper, the authors reviewed recent trends of simulation practices in tribology to model tribo-contact scenario and life cycle assessment (LCA) with the help of simulation. With the advancement of modern computers and computing power, increasing effort has been given towards simulation, which not only saves time and resources but also provides meaningful results. Having said that, like every other technique, simulation has some inherent limitations which need to be considered during practice. Keeping this in mind, the pros and cons of both physical experiments and simulation approaches are reviewed together with their interdependency and how one approach can benefit the other. Various simulation techniques are outlined with a focus on machine learning which will dominate simulation approaches in the future. In addition, simulation of tribo-contacts across different length scales and lubrication conditions is discussed in detail. An extension of the simulation approach, together with experimental data, can lead towards LCA of components which will provide us with a better understanding of the efficient usage of limited resources and conservation of both energy and resources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA