Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Front Microbiol ; 15: 1358175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873141

RESUMO

Introduction: Biosurfactants have been given considerable attention as they are potential candidates for several biotechnological applications. Materials and methods: In this study, a promising thermophilic biosurfactant-producing HA-2 was isolated from the volcanic and arid region of Uhud mountain, Madinah, Saudi Arabia. It was identified using 16S rRNA gene sequence analysis. The biosurfactant production ability was screened using different methods such as the drop collapse test, oil spreading test, hemolytic activity test, CTAB test, and emulsification index. The ability of rhamnolipid production by the tested strain was confirmed by the polymerase chain reaction (PCR) of rhlAB. The affinity of thermophilic HA-2 to hydrophobic substrates was also investigated. Optimization of biosurfactant production was conducted. The biological activities of produced surfactant were investigated. Results and discussion: The isolated HA-1 was identified as Geobacillus stearothermophilus strain OR911984. It could utilize waste sunflower frying oil (WSFF) oil as a low-cost carbon source. It showed high emulsification activity (52 ± 0.0%) and positive results toward other biosurfactant screening tests. The strain showed high cell adhesion to hexane with 41.2% cell surface hydrophobicity. Fourier-transform infrared (FTIR) spectra indicated the presence of hydrophobic chains that comprise lipids, sugars, and hydrophilic glycolipid components. The optimization results showed the optimal factors included potato peel as a carbon source with 68.8% emulsification activity, yeast extract as a nitrogen source with 60% emulsification activity, a pH of 9 (56.6%), and a temperature of 50° (72%). The kinetics showed that optimum biosurfactant production (572.4 mg/L) was recorded at 5 days of incubation. The produced rhamnolipid biosurfactant showed high antimicrobial activity against some human and plant pathogenic bacterial and fungal isolates and high antioxidant activity (90.4%). In addition, it enhanced wheat (Triticum aestivum) growth, with the greatest enhancement obtained with the 5% concentration. Therefore, thermophilic G. stearothermophilus is a promising rhamnolipid biosurfactant producer that utilizes many organic wastes. The produced biosurfactant could be applied as a promising emulsifier, antimicrobial, antioxidant, and plant growth promoter.

2.
Discov Med ; 36(183): 853-864, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665033

RESUMO

BACKGROUND: Urinary tract infections (UTIs) are among the most common infections and can cause numerous complications of the renal system. This study aimed to assess the prevalence of uropathogens and their antibiotic susceptibility patterns in Al-Madinah Al-Munawarah, Saudi Arabia. METHODS: Data was collected from patients with UTIs presented at King Fahad General Hospital in Al-Madinah Al-Munawarah, Saudi Arabia. In this retrospective cross-sectional study, UTI microbial-causing agents and antimicrobial resistance profiles identified using automated systems, Phoenix and VITEK2, were collected between July 2022 and June 2023. In addition, minimal demographic data, including date of collection and sex and age of patients were collected and analyzed using Chi-square test. RESULTS: The study included 1394 patients positive for UTI, comprising 50.57% males and 49.43% females (chi-square goodness-of-fit, p > 0.999). Microbial identification and antimicrobial susceptibility tests were performed on UTI-positive cultures. Among UTIs, mono-infection, caused by a single pathogen, was the most prevalent, accounting for 88.16% of cases, whereas poly-infection (caused by multiple pathogens) presented at 11.9%. The most prevalent UTIs' pathogens were E. coli (30.59%), followed by Klebsiella pneumoniae (21.40%), Enterococcus faecalis (8.46%), Pseudomonas aeruginosa (7.81%), Streptococcus agalactiae (6.35%), Enterococcus faecium (3.01%), Proteus mirabilis (3.01%), Enterobacter cloacae (2.52%), Candida sp. (2.44%), Acinetobacter calcoaceticus-baumannii (1.95%), Staphylococcus aureus (1.79%), and Enterobacter aerogenes (1.30%). The most dominant pathogens that coexisted with other uropathogens to cause UTIs were K. pneumoniae and P. mirabilis (9.32%, chi-square 5.550, p = 0.018), K. pneumoniae and P. aeruginosa (8.07%, chi-square 6.285, p = 0.012), K. pneumoniae and E. faecalis (7.45%, chi-square 5.785, p = 0.016), Candida sp. and Enterococcus faecium (4.97%, chi-square 9.176, p = 0.002, and Candida sp. and Acinetobacter calcoaceticus-baumannii (3.11%, chi-square 4.312, p=0.038)). Among the uropathogens, gram-negative pathogens showed resistance to most of the tested antimicrobials (ampicillins, cephalosporins, fluoroquinolones, trimethoprim-sulfamethoxazole, aztreonam, and nitrofurantoin). High rates of resistance were identified to cephalosporins, amoxicillin-clavulanic acid, and trimethoprim-sulfamethoxazole. CONCLUSION: This study reported UT mono-infection and poly-infection in Al-Madinah Al-Munawarah, Saudi Arabia, with a predominant representation from gram-negative bacteria, Enterobacteriaceae. Most of the UT microbial strains showed a highly resistant profile.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Infecções Urinárias , Infecções Urinárias/microbiologia , Infecções Urinárias/epidemiologia , Infecções Urinárias/tratamento farmacológico , Humanos , Arábia Saudita/epidemiologia , Estudos Retrospectivos , Masculino , Feminino , Prevalência , Pessoa de Meia-Idade , Adulto , Estudos Transversais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Idoso , Adulto Jovem , Adolescente , Farmacorresistência Bacteriana , Criança , Pré-Escolar
3.
J Biomol Struct Dyn ; : 1-14, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407210

RESUMO

Citrobacter koseri is a gram-negative rod that has been linked to infections in people with significant comorbidities and immunocompromised immune systems. It is most commonly known to cause urinary tract infections. Thus, the development of an efficacious C. koseri vaccine is imperative, as the pathogen has acquired resistance to current antibiotics. Subtractive proteomics was employed during this research to identify potential antigenic proteins to design an effective vaccine against C. koseri. The pipeline identified two antigenic proteins as potential vaccine targets: DP-3-O-acyl-N-acetylglucosamine deacetylase and Arabinose 5-phosphate isomerase. B and T cell epitopes from the specific proteins were forecasted employing several immunoinformatic and bioinformatics resources. A vaccine was created using a combination of seven cytotoxic T cell lymphocytes (CTL), five helper T cell lymphocyte (HTL), and seven linear B cell lymphocyte (LBL) epitopes. An adjuvant (ß-defensin) was added to the vaccine to enhance immunological responses. The created vaccine was stable for use in humans, highly antigenic, and non-allergenic. The vaccine's molecular and interactions binding affinity with the human immunological receptor TLR3 were studied using MMGBSA, molecular dynamics (MD) simulations, and molecular docking analyses. E. coli (strain-K12) plasmid vector pET-28a (+) was used to examine the ability of the vaccine to be expressed. The vaccine shows great promise in terms of developing protective immunity against diseases, based on the results of these computer experiments. However, in vitro and animal research are required to validate our findings.Communicated by Ramaswamy H. Sarma.

4.
Microbiol Spectr ; 12(2): e0182723, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38236024

RESUMO

One of the major issues in healthcare today is antibiotic resistance. Antimicrobial peptides (AMPs), a subclass of host defense peptides, have been suggested as a viable solution for the multidrug resistance problem. Legume plants express more than 700 nodule-specific cysteine-rich (NCR) peptides. Three NCR peptides (NCR094, NCR888, and NCR992) were predicted to have antimicrobial activity using in silico AMP prediction programs. This study focused on investigating the roles of the NCRs in antimicrobial activity and antibiofilm activity, followed by in vitro toxicity profiling. Different variants were synthesized, i.e., mutated and truncated derivatives. The effect on the growth of Klebsiella pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) was monitored post-treatment, and survived cells were counted using an in vitro and ex vivo killing assay. The antibiofilm assay was conducted using subinhibitory concentrations of the NCRs and monitoring K. pneumoniae biomass, followed by crystal violet staining. The cytotoxicity profile was evaluated using erythrocyte hemolysis and leukemia (K562) cell line toxicity assays. Out of the NCRs, NCR094 and NCR992 displayed mainly in vitro and ex vivo bactericidal activity on K. pneumoniae. NCR094 wild type (WT) and NCR992 eradicated K. pneumoniae at different potency; NCR094 and NCR992 killed K. pneumoniae completely at 25 and 50 µM, respectively. However, both peptides in the wild type showed negligible bactericidal effect on MRSA in vitro and ex vivo. NCR094 and its derivatives relatively retained the antimicrobial activity on K. pneumoniae in vitro and ex vivo. NCR992 WT lost its antimicrobial activity on K. pneumoniae ex vivo, yet the different truncated and mutated variants retained some of the antimicrobial role ex vivo. All the different variants of NCR094 had no effect on MRSA in vitro and ex vivo. Similarly, NCR992's variants had a negligible bactericidal role on MRSA in vitro, yet the truncated variants had a significantly high bactericidal effect on MRSA ex vivo. NCR094.3 (cystine replacement variant) and NCR992.1 displayed significant antibiofilm activity more than 90%. NCR992.3 and NCR992.2 displayed more than 50% of antibiofilm activity. All the NCR094 forms had no toxicity, except NCR094.1 (49.38%, SD ± 3.46) and all NCR992 forms (63%-93%), which were above the cutoff (20%). Only NCR992.2 showed low toxicity on K562 (24.8%, SD ± 3.40), yet above the 20% cutoff. This study provided preliminary antimicrobial and safety data for the potential use of these peptides for therapeutical applications.IMPORTANCEThe discovery of new antibiotics is urgently needed, given the global expansion of antibiotic-resistant bacteria and the rising mortality rate. One of the initial lines of defense against microbial infections is antimicrobial peptides (AMPs). Plants can express hundreds of such AMPs as defensins and defensin-like peptides. The nodule-specific cysteine-rich (NCR) peptides are a class of defensin-like peptides that have evolved in rhizobial-legume symbioses. This study screened the antimicrobial activity of a subset of NCR sequences using online computational AMP prediction algorithms. Two novel NCRs, NCR094 and NCR992, with different variants were identified to exhibit antimicrobial activity with various potency on two problematic pathogens, K. pneumoniae and MRSA, using in vitro and ex vivo killing assays. Yet, one variant, NCR094.3, had no toxicity toward human cells and displayed antibiofilm activity, which make it a promising lead for antimicrobial drug development.


Assuntos
Anti-Infecciosos , Medicago truncatula , Staphylococcus aureus Resistente à Meticilina , Humanos , Medicago truncatula/química , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Peptídeos Antimicrobianos , Cisteína/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Klebsiella pneumoniae , Verduras , Defensinas/farmacologia , Testes de Sensibilidade Microbiana
5.
Cancers (Basel) ; 15(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894386

RESUMO

Colorectal cancer (CRC) is a significant global health concern. Microbial dysbiosis and associated metabolites have been associated with CRC occurrence and progression. This study aims to analyze the gut microbiota composition and the enriched metabolic pathways in patients with late-stage CRC. In this study, a cohort of 25 CRC patients diagnosed at late stage III and IV and 25 healthy participants were enrolled. The fecal bacterial composition was investigated using V3-V4 ribosomal RNA gene sequencing, followed by clustering and linear discriminant analysis (LDA) effect size (LEfSe) analyses. A cluster of ortholog genes' (COG) functional annotations and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed to identify enrichment pathways between the two groups. The findings showed that the fecal microbiota between the two groups varied significantly in alpha and beta diversities. CRC patients' fecal samples had significantly enriched populations of Streptococcus salivarius, S. parasanguins, S. anginosus, Lactobacillus mucosae, L. gasseri, Peptostreptococcus, Eubacterium, Aerococcus, Family XIII_AD3001 Group, Erysipelatoclostridium, Escherichia-Shigella, Klebsiella, Enterobacter, Alistipes, Ralstonia, and Pseudomonas (Q < 0.05). The enriched pathways identified in the CRC group were amino acid transport, signaling and metabolism, membrane biogenesis, DNA replication and mismatch repair system, and protease activity (Q < 0.05). These results suggested that the imbalance between intestinal bacteria and the elevated level of the predicated functions and pathways may contribute to the development of advanced CRC tumors. Further research is warranted to elucidate the exact role of the gut microbiome in CRC and its potential implications for use in diagnostic, prevention, and treatment strategies.

6.
Microorganisms ; 11(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37630597

RESUMO

Globally, colorectal cancer (CRC) is the second most common cause of mortality worldwide. Considerable evidence indicates that dysbiosis of the gut microbial community and its metabolite secretions play a fundamental role in advanced adenoma (ADA) and CRC development and progression. This study is a systematic review that aims to assess the clinical association between gut microbial markers and/or gut and circulating metabolites with ADA and CRC. Five electronic databases were searched by four independent reviewers. Only controlled trials that compared ADA and/or CRC with healthy control (HC) using either untargeted (16s rRNA gene or whole genome sequencing) or targeted (gene-based real-time PCR) identification methods for gut microbiome profile, or untargeted or targeted metabolite profiling approaches from the gut or serum/plasma, were eligible. Three independent reviewers evaluated the quality of the studies using the Cochrane Handbook for Systematic Reviews of Interventions. Twenty-four studies were eligible. We identified strong evidence of two microbial markers Fusobacterium and Porphyromonas for ADA vs. CRC, and nine microbial markers Lachnospiraceae-Lachnoclostridium, Ruminococcaceae-Ruminococcus, Parvimonas spp., Parvimonas micra, Enterobacteriaceae, Fusobacterium spp., Bacteroides, Peptostreptococcus-Peptostreptococcus stomatis, Clostridia spp.-Clostridium hylemonae, Clostridium symbiosum, and Porphyromonas-Porphyromonas asaccharolytica for CRC vs. HC. The remaining metabolite marker evidence between the various groups, including ADA vs. HC, ADA vs. HC, and CRC vs. HC, was not of sufficient quality to support additional findings. The identified gut microbial markers can be used in a panel for diagnosing ADA and/or CRC. Further research in the metabolite markers area is needed to evaluate the possibility to use in diagnostic or prognostic markers for colorectal cancer.

7.
Front Artif Intell ; 6: 1327355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38375088

RESUMO

Healthcare is a topic of significant concern within the academic and business sectors. The COVID-19 pandemic has had a considerable effect on the health of people worldwide. The rapid increase in cases adversely affects a nation's economy, public health, and residents' social and personal well-being. Improving the precision of COVID-19 infection forecasts can aid in making informed decisions regarding interventions, given the pandemic's harmful impact on numerous aspects of human life, such as health and the economy. This study aims to predict the number of confirmed COVID-19 cases in Saudi Arabia using Bayesian optimization (BOA) and deep learning (DL) methods. Two methods were assessed for their efficacy in predicting the occurrence of positive cases of COVID-19. The research employed data from confirmed COVID-19 cases in Saudi Arabia (SA), the United Kingdom (UK), and Tunisia (TU) from 2020 to 2021. The findings from the BOA model indicate that accurately predicting the number of COVID-19 positive cases is difficult due to the BOA projections needing to align with the assumptions. Thus, a DL approach was utilized to enhance the precision of COVID-19 positive case prediction in South Africa. The DQN model performed better than the BOA model when assessing RMSE and MAPE values. The model operates on a local server infrastructure, where the trained policy is transmitted solely to DQN. DQN formulated a reward function to amplify the efficiency of the DQN algorithm. By examining the rate of change and duration of sleep in the test data, this function can enhance the DQN model's training. Based on simulation findings, it can decrease the DQN work cycle by roughly 28% and diminish data overhead by more than 50% on average.

8.
Infect Drug Resist ; 15: 6589-6599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386419

RESUMO

Background: Helicobacter pylori (H. pylori) infection is relevant to several chronic human diseases, from digestive diseases to renal, metabolic, and cancer diseases. H. pylori infections and chronic kidney diseases are in increasing, global records; if not well controlled in a specific population, these diseases might lead to more clinical complications. Methods: In this retrospective study, we investigated the prevalence of acute H. pylori infections among 127 dialysis patients via subjecting their serums to the enzyme-linked immunosorbent assay (ELISA) to detect the human Immunoglobulin M (IgM) against H. pylori infections. Samples were from dialysis patients in a single hemodialysis center in Medina, Saudi Arabia, from January to August 2021. Results: Our results indicated the significant prevalence of H. pylori acute infections among 33.1% of renal failure patients recruited in this study, chi-squared: 14.559, p-value: 0.0001. In addition, no significant occurrence of acute H. pylori infection among males and females, chi-squared: 1.823, p-value: 0.177. Furthermore, the prevalence of acute H. pylori infection was not significant in different age groups of renal failure patients. Chi-squared: 6.803, p-value: 0.147, despite H. pylori-infected cases predominantly represented in patients above 51 years. Moreover, we noticed that hypertension, followed by diabetes, was the most prevalent underlying medical condition among acute infected H. pylori and renal failure patients. Conclusion: We documented the significant prevalence of acute H. pylori infection among renal failure patients. We also highlighted and discussed the possible potential roles of H. pylori in renal failure and other chronic diseases. Routine screening and treatment for acute H. pylori infection for chronic kidney diseases, hypertension, and diabetes patients would positively reduce the bacterium's progressive effects on them. They might even improve the control of these diseases.

9.
Healthcare (Basel) ; 10(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36421640

RESUMO

Background: Community-acquired atypical pneumonia is generally a mild and self-limiting infection. Still, it may lead to hospitalization and progressive clinical complications in some cases, particularly among the elderly and individuals with chronic diseases. Chlamydia pneumoniae, Legionella pneumophila, and Mycoplasma pneumoniae are the community's main causative agents of atypical pneumonia. However, most published studies evaluated their incidence in the hospital setting, and little is known about their prevalence among healthy individuals. This work aims to assess the seroprevalence of these bacteria among healthy people to determine the status of immunity against these bacteria in the community. Methodology: Two hundred and eighty-three serum samples from a multicenter in Medina, Saudi Arabia, were collected in this study. Serum samples were subjected to indirect enzyme-linked immunosorbent assays (ELISAs) to detect IgG antibodies against C. pneumoniae, L. pneumophila, and M. pneumoniae to investigate the seroprevalence of these bacteria and their distribution among different genders and age groups of healthy people. Results: IgG seropositivity for at least one of the three atypical pneumonia-causative bacteria occurred in 85.8% (n= 243/283) of the sample population. IgG seropositivity for C. pneumoniae occurred in 80.6% (228/283) of the population, followed by 37.5% for L. pneumophila and 23% for M. pneumoniae (66/283). In addition, the IgG seropositivity rates for the three bacteria were observed predominantly among male participants. Furthermore, no significant difference in IgG seropositivity distribution occurred between different age groups of healthy people for C. pneumoniae, L. pneumophila and M. pneumoniae. Conclusions: The current study found that C. pneumoniae, L. pneumophila, and M. pneumoniae tended to be highly prevalent among healthy people and more common among males than females. Additionally, their pattern of distribution among healthy individuals seemed to be predominant among young adults (aged 20−40 years), which differs from their predominant distribution among elderly patients in hospital settings (>50 years).

10.
Nat Microbiol ; 7(9): 1453-1465, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35953657

RESUMO

Symbiotic partnerships with rhizobial bacteria enable legumes to grow without nitrogen fertilizer because rhizobia convert atmospheric nitrogen gas into ammonia via nitrogenase. After Sinorhizobium meliloti penetrate the root nodules that they have elicited in Medicago truncatula, the plant produces a family of about 700 nodule cysteine-rich (NCR) peptides that guide the differentiation of endocytosed bacteria into nitrogen-fixing bacteroids. The sequences of the NCR peptides are related to the defensin class of antimicrobial peptides, but have been adapted to play symbiotic roles. Using a variety of spectroscopic, biophysical and biochemical techniques, we show here that the most extensively characterized NCR peptide, 24 amino acid NCR247, binds haem with nanomolar affinity. Bound haem molecules and their iron are initially made biologically inaccessible through the formation of hexamers (6 haem/6 NCR247) and then higher-order complexes. We present evidence that NCR247 is crucial for effective nitrogen-fixing symbiosis. We propose that by sequestering haem and its bound iron, NCR247 creates a physiological state of haem deprivation. This in turn induces an iron-starvation response in rhizobia that results in iron import, which itself is required for nitrogenase activity. Using the same methods as for L-NCR247, we show that the D-enantiomer of NCR247 can bind and sequester haem in an equivalent manner. The special abilities of NCR247 and its D-enantiomer to sequester haem suggest a broad range of potential applications related to human health.


Assuntos
Rhizobium , Simbiose , Bactérias , Cisteína , Heme , Humanos , Ferro , Nitrogênio , Nitrogenase , Peptídeos
11.
Emerg Microbes Infect ; 7(1): 137, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30087323

RESUMO

The Group B streptococcus (GBS) can express a capsular polysaccharide (CPS). There are ten recognized CPSs (Ia, Ib, and II-IX). A GBS isolate is considered nontypeable (NT) when CPS cannot be identified as one of ten types. Two groups of GBS NT isolates were studied, isolates without surface sialic acid (sia(-)) and isolates with surface sialic acid (sia(+)). The first objective was to characterize NT sia(-) isolates that failed CPS identification by an immunodiffusion antisera typing assay and a RT-PCR capsule typing assay. NT sia(-) isolates were characterized by assaying phenotypic changes and identifying covR/S mutations that may potentially have a role in the altered phenotypes. The second objective was to characterize NT sia(+) isolates that failed to identify as one of the ten CPS types by an immundiffusion antisera-based typing assay and a RT-PCR capsule typing assay yet expressed capsule. Fifteen NT sia(-) isolates displayed increased ß hemolysis/orange pigmentation, decreased CAMP activity, inability to form biofilm, and susceptibility to phagocytosis by human blood. DNA sequence analysis of the covR/S genes in the sia(-) isolates found mutations in 14 of 15 isolates assayed. These mutations in the covR/S genes may potentially contribute to lack of expression of phenotypic traits assayed in vitro. For the three NT sia(+) isolates, whole-genome sequence analyses identified two isolates with cps gene clusters identical to the recently described and uncommon CPSIIa type. The third isolate possessed a hybrid cluster containing cps genes for both CPSIIa and CPSV suggesting recombination between these two gene clusters.


Assuntos
Cápsulas Bacterianas/genética , Proteínas de Bactérias/metabolismo , Família Multigênica , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/genética , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Biofilmes , Humanos , Mutação , Fenótipo , Streptococcus agalactiae/isolamento & purificação , Streptococcus agalactiae/fisiologia
12.
J Clin Microbiol ; 55(9): 2637-2650, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28615470

RESUMO

The group B streptococcus (GBS) capsular polysaccharide (CPS) is an important virulence factor which is also used for GBS typing. There are 10 CPS types (Ia, Ib, and II to IX). GBS that do not phenotypically type are considered nontypeable. All genes required for CPS synthesis are found on the GBS cps operon, which contains a highly variable CPS-determining region (cpsG-cpsK). The objective of this study was development of an assay to detect sialic acid on the GBS cell surface, followed by a genotypic PCR CPS typing assay. Sialic acid is located at the terminal end of the side chain of all known GBS CPS types. Sialic acid can be bound to commercially available lectins such as slug Limax flavus lectin. Biotinylated L. flavus-streptavidin-peroxidase complex was used in an enzyme immunoassay and dot blot assay to detect sialic acid. This was followed by a PCR typing scheme that was developed to target the serotype-determining region of the cps locus for Ia, Ib, and II to IX. Sialic acid from the CPS types Ia, Ib, and II to IX was detectable on the GBS cell surfaces of all previously identified CPS-typed GBS strains assayed. This was followed by the real-time PCR typing assay which successfully identified CPS Ia, Ib, and II to IX types. The combination of phenotypic and genotypic assays provides an accurate tool for detection of CPS expression and assignment of CPS typing. These assays have the potential to be used for CPS typing in large-scale epidemiological studies.


Assuntos
Cápsulas Bacterianas/classificação , Técnicas de Tipagem Bacteriana/métodos , Ácido N-Acetilneuramínico/análise , Polissacarídeos Bacterianos/química , Streptococcus agalactiae/patogenicidade , Cápsulas Bacterianas/química , Proteínas de Bactérias/química , Peroxidase do Rábano Silvestre/química , Técnicas Imunoenzimáticas/métodos , Reação em Cadeia da Polimerase em Tempo Real , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/microbiologia
14.
J Clin Microbiol ; 54(7): 1774-1781, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27098960

RESUMO

Group B streptococci (GBS) cause severe invasive disease in both neonates and adults. Understanding the epidemiology of GBS provides information that can include determining disease prevalence rates in defined populations and geographic regions, documenting the success of GBS screening programs, and understanding antimicrobial susceptibility patterns. In Alberta, only neonatal invasive GBS (iGBS) disease is notifiable to health authorities. We performed a surveillance study of iGBS in Alberta, Canada, from 2003 to 2013. Over the 11-year period, the disease incidence rate increased from a low of 3.92 cases/100,000 population to a high of 5.99 cases/100,000 population. The capsular polysaccharide serotypes (CPSs) found were CPS III (20.3%), CPS V (19.1%), CPS Ia (18.9%), CPS Ib (12.7%), CPS II (11.1%), CPS IV (6.3%), and nontypeable GBS (9.4%). Rates of early-onset disease (0 to 7 days) increased from 0.15 cases/1,000 live births (in 2003) to 0.34 cases/1,000 live births (in 2013). Rates of late-onset disease (>7 to 90 days) also rose, from 0.15 cases/1,000 live births (in 2003) to 0.39 cases/1,000 live births (in 2013). Alberta also experienced an increase in CPS IV isolates, from 2 cases (in 2003) to 24 cases (in 2013), of which the majority were hvgA negative (93.4%) [corrected]. The predominant sequence type (ST) in 2013 was ST459. Erythromycin resistance rose from 23.6% to 43.9% (in 2013). Clindamycin resistance also increased, from 12.2% to 32.5%. In summary, Alberta, Canada, has experienced an increase in GBS disease; the increase includes both neonatal and adult disease. CPS IV cases also notably increased during the surveillance period, as did resistance to erythromycin and clindamycin.


Assuntos
Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/classificação , Streptococcus agalactiae/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alberta/epidemiologia , Antibacterianos/farmacologia , Criança , Pré-Escolar , Farmacorresistência Bacteriana , Feminino , Genótipo , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Tipagem Molecular , Sorogrupo , Streptococcus agalactiae/genética , Streptococcus agalactiae/imunologia , Adulto Jovem
15.
Cell Chem Biol ; 23(3): 381-91, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26991103

RESUMO

Antibiotic resistance arises from the maintenance of resistance mutations or genes acquired from the acquisition of adaptive de novo mutations or the transfer of resistance genes. Antibiotic resistance is acquired in response to antibiotic therapy by activating SOS-mediated DNA repair and mutagenesis and horizontal gene transfer pathways. Initiation of the SOS pathway promotes activation of RecA, inactivation of LexA repressor, and induction of SOS genes. Here, we have identified and characterized phthalocyanine tetrasulfonic acid RecA inhibitors that block antibiotic-induced activation of the SOS response. These inhibitors potentiate the activity of bactericidal antibiotics, including members of the quinolone, ß-lactam, and aminoglycoside families in both Gram-negative and Gram-positive bacteria. They reduce the ability of bacteria to acquire antibiotic resistance mutations and to transfer mobile genetic elements conferring resistance. This study highlights the advantage of including RecA inhibitors in bactericidal antibiotic therapies and provides a new strategy for prolonging antibiotic shelf life.


Assuntos
Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Indóis/farmacologia , Recombinases Rec A/antagonistas & inibidores , Animais , Antibacterianos/química , Inibidores Enzimáticos/química , Feminino , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/enzimologia , Indóis/química , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Relação Estrutura-Atividade
16.
JMM Case Rep ; 3(3): e005034, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28348758

RESUMO

INTRODUCTION: Late-onset disease with Group B Streptococcus (GBS LOD) remains a significant problem in neonates. Unlike early-onset disease, rates of GBS LOD have not changed with prenatal testing. Effects of GBS LOD can be severe and thus identifying risk factors for severe GBS LOD, such as hypervirulence genes, may help in managing these infants. CASE PRESENTATION: We present a case of a neonate with capsular serotype III GBS sepsis without meningitis that recurred 6 days after a 10-day-treatment period with IV ampicillin. The second episode was characterized by sepsis, neuroinvasion, meningitis and subsequent profound encephalomalacia. The short duration between the two episodes suggested recrudescence rather than reinfection. The GBS isolate was ultimately found to be positive for hypervirulence gene hvgA+, which encodes for a protein known to mediate meningeal tropism and neuroinvasion. CONCLUSION: hvgA positivity may thus potentially serve as an important biomarker for severe and neuroinvasive GBS LOD that can influence treatment decisions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA