Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9845, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684750

RESUMO

Fixed dose combinations (FDCs) incorporating two or three medicines in a single inhaler have been created to enhance patient compliance and hence clinical outcomes. However, the development of dry powder inhalers (DPIs), particularly for FDCs, faces challenges pertinent to formulation uniformity and reproducibility. Therefore, this project aimed to employ nanotechnology to develop a FDC of DPIs for market-leading medicines-fluticasone propionate (FP) and salmeterol xinafoate (SAL)-for asthma management. Nanoaggregates were prepared using a novel biocompatible and biodegradable poly(ester amide) based on the amino acid tyrosine, utilising a one-step interfacial polymerisation process. The produced tyrosine poly (ester amide) drug-loaded nanoparticles were evaluated for content uniformity, PSA, FTIR, TEM, DSC, XRD and aerodynamic performance (in vitro and in vivo). The optimised formulation demonstrated high entrapment efficiency- > 90%. The aerodynamic performance in terms of the emitted dose, fine particle fraction and respirable dose was superior to the carrier-based marketed product. In-vivo studies showed that FP (above the marketed formulation) and SAL reached the lungs of mice in a reproducible manner. These results highlight the superiority of novel FDC FP/SAL nanoparticles prepared via a one-step process, which can be used as a cost-effective and efficient method to alleviate the burden of asthma.


Assuntos
Nanopartículas , Tirosina , Animais , Nanopartículas/química , Tirosina/química , Tirosina/análogos & derivados , Administração por Inalação , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Camundongos , Asma/tratamento farmacológico , Poliésteres/química , Poliésteres/síntese química , Inaladores de Pó Seco , Fluticasona/química , Fluticasona/administração & dosagem , Sistemas de Liberação de Medicamentos , Xinafoato de Salmeterol/química , Xinafoato de Salmeterol/administração & dosagem , Tamanho da Partícula , Portadores de Fármacos/química
2.
Molecules ; 28(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36677806

RESUMO

Promethazine hydrochloride (PMZ), a potent H1-histamine blocker widely used to prevent motion sickness, dizziness, nausea, and vomiting, has a bitter taste. In the present study, taste masked PMZ nanocapsules (NCs) were prepared using an interfacial polycondensation technique. A one-step approach was used to expedite the synthesis of NCs made from a biocompatible and biodegradable polyamide based on l-arginine. The produced NCs had an average particle size of 193.63 ± 39.1 nm and a zeta potential of −31.7 ± 1.25 mV, indicating their stability. The NCs were characterized using differential scanning calorimetric analysis and X-ray diffraction, as well as transmission electron microscopy that demonstrated the formation of the NCs and the incorporation of PMZ within the polymer. The in vitro release study of the PMZ-loaded NCs displayed a 0.91 ± 0.02% release of PMZ after 10 min using artificial saliva as the dissolution media, indicating excellent taste masked particles. The in vivo study using mice revealed that the amount of fluid consumed by the PMZ-NCs group was significantly higher than that consumed by the free PMZ group (p < 0.05). This study confirmed that NCs using polyamides based on l-arginine and interfacial polycondensation can serve as a good platform for the effective taste masking of bitter actives.


Assuntos
Nanocápsulas , Prometazina , Camundongos , Animais , Prometazina/química , Nylons , Paladar , Percepção Gustatória , Antagonistas dos Receptores Histamínicos H1
3.
Molecules ; 27(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35744784

RESUMO

Chelating hyperbranched polyester (CHPE) nanoparticles have become an attractive new material family for developing high-capacity nanoscale chelating agents with highly branched structures and many functional groups in the main chains and end groups that can be used to remove heavy metals from water. In this study, a hyperbranched polyester with a particle size of 180-643 nm was synthesized with A2+B3 interfacial polymerization, using dimethylmalonyl chloride as the difunctional monomer (A2) and 1,1,1-tris(4-hydroxyphenyl)ethane (THPE) as the trifunctional monomer (B3). FTIR and NMR were used to characterize the CHPE and confirm the structure. The CHPE nanoparticles were generally considered hydrophilic, with an observed swelling capacity of 160.70%. The thermal properties of the CHPE nanoparticles were studied by thermal gravimetric analysis (TGA) with 1% mass loss at temperatures above 185 °C. The XRD of the CHPE nanoparticles showed a semi-crystalline pattern, as evident from the presence of peaks at positions ~18° and 20°. The nature of the surface of the CHPE was examined using SEM. Batch equilibrium was used to investigate the removal properties of the CHPE nanoparticles towards Cd(II) ions as a function of temperature, contact time, and Cd(II) concentration. The Cd(II) ion thermodynamics, kinetics, and desorption data on the CHPE nanoparticles were also studied.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Adsorção , Cádmio/química , Quelantes , Concentração de Íons de Hidrogênio , Íons/química , Nanopartículas/química , Poliésteres , Águas Residuárias/química , Água , Poluentes Químicos da Água/química
4.
Polymers (Basel) ; 14(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335412

RESUMO

Thymoquinone (TQ), the main active constituent of Nigella sativa, has demonstrated broad-spectrum antimicrobial, antioxidant, and anti-inflammatory effects, which suggest its potential use in secondary infections caused by COVID-19. However, clinical deployment has been hindered due to its limited aqueous solubility and poor bioavailability. Therefore, a targeted delivery system to the lungs using nanotechnology is needed to overcome limitations encountered with TQ. In this project, a novel TQ-loaded poly(ester amide) based on L-arginine nanoparticles was prepared using the interfacial polycondensation method for a dry powder inhaler targeting delivery of TQ to the lungs. The nanoparticles were characterized by FTIR and NMR to confirm the structure. Transmission electron microscopy and Zetasizer results confirmed the particle diameter of 52 nm. The high-dose formulation showed the entrapment efficiency and loading capacity values of TQ to be 99.77% and 35.56%, respectively. An XRD study proved that TQ did not change its crystallinity, which was further confirmed by the DSC study. Optimized nanoparticles were evaluated for their in vitro aerodynamic performance, which demonstrated an effective delivery of 22.7-23.7% of the nominal dose into the lower parts of the lungs. The high drug-targeting potential and efficiency demonstrates the significant role of the TQ nanoparticles for potential application in COVID-19 and other respiratory conditions.

5.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35337119

RESUMO

One of the key challenges in developing a dry powder inhaler (DPI) of an inhalable potent fixed-dose combination (FDC) is the ability of the formulation to generate an effective and reproducible aerosol able to reach the lower parts of the lungs. Herein, a one-step approach is presented to expedite the synthesis of nanoaggregates made from a biocompatible and biodegradable polyamide based on L-lysine amino acid employing market-leading active pharmaceutical ingredients (fluticasone propionate (FP) and salmeterol xinafoate (SAL)) for the management of asthma. The nanoaggregates were synthesized using interfacial polycondensation that produced nanocapsules with an average particle size of 226.7 ± 35.3 nm and zeta potential of -30.6 ± 4.2 mV. Differential scanning calorimetric analysis and x-ray diffraction, as well as scanning electron microscopy of the produced FDC, revealed the ability of the produced nanocapsules to encapsulate the two actives and display the best aerodynamic performance. The FDC nanocapsules displayed 88.5% and 98.5% of the emitted dose for FP and SAL, respectively. The fine particle fraction of the nominated dose was superior to the marketed product (Seretide Diskus®, Brentford, United Kingdom). The in-vitro release study showed an extended drug release profile. Our findings suggest that nanoaggregates using polyamides based on L-lysine and interfacial polycondensation can serve as a good platform for pulmonary drug delivery of FDC systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA