Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(3): 159452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244676

RESUMO

Very long-chain fatty acids (VLCFAs) are degraded exclusively in peroxisomes, as evidenced by the accumulation of VLCFAs in patients with certain peroxisomal disorders. Although accumulation of VLCFAs is considered to be associated with health issues, including neuronal degeneration, the mechanisms underlying VLCFAs-induced tissue degeneration remain unclear. Here, we report the toxic effect of VLCFA and protective effect of C18: 1 FA in peroxisome-deficient CHO cells. We examined the cytotoxicity of saturated and monounsaturated VLCFAs with chain-length at C20-C26, and found that longer and saturated VLCFA showed potent cytotoxicity at lower accumulation levels. Furthermore, the extent of VLCFA-induced toxicity was found to be associated with a decrease in cellular C18:1 FA levels. Notably, supplementation with C18:1 FA effectively rescued the cells from VLCFA-induced apoptosis without reducing the cellular VLCFAs levels, implying that peroxisome-deficient cells can survive in the presence of accumulated VLCFA, as long as the cells keep sufficient levels of cellular C18:1 FA. These results suggest a therapeutic potential of C18:1 FA in peroxisome disease and may provide new insights into the pharmacological effect of Lorenzo's oil, a 4:1 mixture of C18:1 and C22:1 FA.


Assuntos
Ácido Oleico , Peroxissomos , Animais , Cricetinae , Humanos , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Peroxissomos/metabolismo , Ácidos Graxos/metabolismo , Cricetulus , Células CHO , Ácidos Graxos não Esterificados/metabolismo , Apoptose
2.
Cureus ; 15(10): e47105, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021728

RESUMO

This meta-analysis aimed to compare the effectiveness of metformin versus lifestyle interventions in preventing diabetes in individuals with prediabetes. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and conducted a comprehensive search of databases (PubMed, Cochrane Library, EMBASE) up to September 1, 2023. Five eligible studies were included. The results showed that there was no significant difference in the risk of developing diabetes between the metformin and lifestyle intervention groups (RR: 1.14, 95% CI: 0.77-1.68). Similarly, when comparing metformin with lifestyle intervention, the risk of diabetes was slightly higher in the metformin group, but this difference was not statistically significant (RR: 1.31, 95% CI: 0.93-1.86). When comparing metformin with lifestyle intervention to lifestyle intervention alone, no significant difference was observed in the incidence of diabetes (RR: 0.88, 95% CI: 0.74-1.04). In conclusion, our analysis found that the incidence of type 2 diabetes was slightly higher in patients receiving metformin alone compared to lifestyle intervention, but this difference did not reach statistical significance. Further trials are necessary to better evaluate these interventions for preventing type 2 diabetes in high-risk individuals.

3.
J Med Invest ; 70(3.4): 403-410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37940524

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder associated with peroxisomal dysfunction. Patients with this rare disease accumulate very long-chain fatty acids (VLCFAs) in their bodies because of impairment of peroxisomal VLCFA ?-oxidation. Several clinical types of X-ALD, ranging from mild (axonopathy in the spinal cord) to severe (cerebral demyelination), are known. However, the molecular basis for this phenotypic variability remains largely unknown. In this study, we determined plasma ceramide (CER) profile using liquid chromatography-tandem mass spectrometry. We characterized the molecular species profile of CER in the plasma of patients with mild (adrenomyeloneuropathy;AMN) and severe (cerebral) X-ALD. Eleven X-ALD patients (five cerebral, five AMN, and one carrier) and 10 healthy volunteers participated in this study. Elevation of C26:0 CER was found to be a common feature regardless of the clinical types. The level of C26:1 CER was significantly higher in AMN but not in cerebral type, than that in healthy controls. The C26:1 CER level in the cerebral type was significantly lower than that in the AMN type. These results suggest that a high level of C26:0 CER, along with a control level of C26:1 CER, is a characteristic feature of the cerebral type X-ALD. J. Med. Invest. 70 : 403-410, August, 2023.


Assuntos
Adrenoleucodistrofia , Ceramidas , Humanos , Adrenoleucodistrofia/genética , Ceramidas/sangue
4.
J Biochem ; 175(1): 115-124, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37827526

RESUMO

A convenient method for the determination of plant sphingolipids (glycosylinositol phosphoceramide, GIPC; glucosylceramide, GluCer; phytoceramide 1-phosphate, PC1P and phytoceramide, PCer) was developed. This method includes the extraction of lipids using 1-butanol, alkali hydrolysis with methylamine and separation by TLC. The amounts of sphingolipids in the sample were determined based on the relative intensities of standard sphingolipids visualized by primulin/UV on TLC. Using this method, we found that almost all GIPCs were degraded in response to tissue homogenization in cruciferous plants (cabbage, broccoli and Arabidopsis thaliana). The decrease in GIPCs was compensated for by increases in PC1P and PCer, indicating that GIPC was degraded by hydrolysis at the D and C positions of GIPC, respectively. In carrot roots and leaves, most of GIPC degradation was compensated for by an increase in PCer. In rice roots, the decrease in GIPCs was not fully explained by the increases in PC1P and PCer, indicating that enzymes other than phospholipase C and D activities operated. As the visualization of lipids on TLC is useful for detecting the appearance or disappearance of lipids, this method will be available for the characterization of metabolism of sphingolipids in plants.


Assuntos
Arabidopsis , Brassica , Glicoesfingolipídeos/metabolismo , Esfingolipídeos/metabolismo , Plantas/metabolismo , Arabidopsis/metabolismo
5.
Cureus ; 15(5): e39406, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37362536

RESUMO

This study was done to compare the perioperative outcomes and long-term outcomes between low ligation and high ligation of the inferior mesentric artery (IMA) in sigmoid colon and rectal cancer surgery. This study was conducted following the recommendations of the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA). A literature search was performed in electronic databases including PubMed, CINAHIL, EMBASE, and Web of Science to identify studies published between January 1, 2015, and April 30, 2023. The outcomes assessed in this meta-analysis included postoperative complications (anastomotic leakage, surgical site infection, and postoperative ileus), intraoperative outcomes (duration of surgery in minutes, total intraoperative blood loss in milliliters, total lymph nodes harvested, and total number of metastatic lymph nodes), recovery outcomes (time to first flatus and length of hospital stay), and long-term outcomes (five-year mortality rate and disease-free survival rate). A total of 17 studies were included in this meta-analysis. Of these, six were randomized control trials (RCTs) and 11 were retrospective cohort studies. This meta-analysis suggests that lower ligation may be associated with a lower risk of anastomotic leakage compared to higher ligation in patients undergoing colon cancer surgery. However, there was no significant difference between the two techniques in terms of surgical site infection, postoperative ileus, total lymph nodes harvested, number of metastatic lymph nodes, duration of surgery, intraoperative blood loss, and length of hospital stay. Time to first flatus was significantly shorter in patients who underwent lower ligation. Additionally, there were no significant differences in the five-year mortality rate and disease-free survival rate between the two techniques. The results of this study indicate that both techniques are comparable in most aspects and suggest that the choice of technique should be based on individual patient factors and surgeon preference.

6.
Commun Biol ; 6(1): 524, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193762

RESUMO

Cyclic phosphatidic acid (cPA) is a lipid mediator, which regulates adipogenic differentiation and glucose homeostasis by suppressing nuclear peroxisome proliferator-activated receptor γ (PPARγ). Glycerophosphodiesterase 7 (GDE7) is a Ca2+-dependent lysophospholipase D that localizes in the endoplasmic reticulum. Although mouse GDE7 catalyzes cPA production in a cell-free system, it is unknown whether GDE7 generates cPA in living cells. Here, we demonstrate that human GDE7 possesses cPA-producing activity in living cells as well as in a cell-free system. Furthermore, the active site of human GDE7 is directed towards the luminal side of the endoplasmic reticulum. Mutagenesis revealed that amino acid residues F227 and Y238 are important for catalytic activity. GDE7 suppresses the PPARγ pathway in human mammary MCF-7 and mouse preadipocyte 3T3-L1 cells, suggesting that cPA functions as an intracellular lipid mediator. These findings lead to a better understanding of the biological role of GDE7 and its product, cPA.


Assuntos
PPAR gama , Ácidos Fosfatídicos , Camundongos , Animais , Humanos , Ácidos Fosfatídicos/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Lisofosfolipídeos/metabolismo , Retículo Endoplasmático/metabolismo , Diester Fosfórico Hidrolases/genética
7.
N Biotechnol ; 76: 23-32, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37037303

RESUMO

Phage display technology is a powerful tool for selecting monoclonal antibodies against a diverse set of antigens. Within toxinology, however, it remains challenging to generate monoclonal antibodies against many animal toxins, as they are difficult to obtain from venom. Recombinant toxins have been proposed as a solution to overcome this challenge, but so far, few have been used as antigens to generate neutralizing antibodies. Here, we describe the recombinant expression of α-cobratoxin in E. coli and its successful application as an antigen in a phage display selection campaign. From this campaign, an scFv (single-chain variable fragment) was isolated with similar binding affinity to a control scFv generated against the native toxin. The selected scFv recognizes a structural epitope, enabling it to inhibit the interaction between the acetylcholine receptor and the native toxin in vitro. This approach represents the first entirely in vitro antibody selection strategy for generating neutralizing monoclonal antibodies against a snake toxin.


Assuntos
Bacteriófagos , Anticorpos de Cadeia Única , Animais , Anticorpos de Cadeia Única/genética , Epitopos , Biblioteca de Peptídeos , Escherichia coli/genética , Escherichia coli/metabolismo , Anticorpos Monoclonais , Venenos de Serpentes/metabolismo , Bacteriófagos/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-36460260

RESUMO

One of the major functions of peroxisomes in mammals is oxidation of very long-chain fatty acids (VLCFAs). Genetic defects in peroxisomal ß-oxidation result in the accumulation of VLCFAs and lead to a variety of health problems, such as demyelination of nervous tissues. However, the mechanisms by which VLCFAs cause tissue degeneration have not been fully elucidated. Recently, we found that the addition of small amounts of isopropanol can enhance the solubility of saturated VLCFAs in an aqueous medium. In this study, we characterized the biological effect of extracellular VLCFAs in peroxisome-deficient Chinese hamster ovary (CHO) cells, neural crest-derived pheochromocytoma cells (PC12), and immortalized adult Fischer rat Schwann cells (IFRS1) using this solubilizing technique. C20:0 FA was the most toxic of the C16-C26 FAs tested in all cells. The basis of the toxicity of C20:0 FA was apoptosis and was observed at 5 µM and 30 µM in peroxisome-deficient and wild-type CHO cells, respectively. The sensitivity of wild-type CHO cells to cytotoxic C20:0 FA was enhanced in the presence of a peroxisomal ß-oxidation inhibitor. Further, a positive correlation was evident between cell toxicity and the extent of intracellular accumulation of toxic FA. These results suggest that peroxisomes are pivotal in the detoxification of apoptotic VLCFAs by preventing their accumulation.


Assuntos
Ácidos Graxos , Peroxissomos , Cricetinae , Animais , Peroxissomos/metabolismo , Ácidos Graxos/metabolismo , Células CHO , Cricetulus , Oxirredução
9.
J Med Invest ; 69(3.4): 196-203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36244770

RESUMO

Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pneumonias. Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are signaling lipids that evoke growth factor-like responses to many cells. Recent studies revealed the involvement of LPA and S1P in the pathology of IPF. In this study, we determined LPA, S1P and ceramide 1-phosphate (C1P) in peripheral blood plasma of IPF patients, and examined correlation to the vital capacity of lung (VC), an indicator of development of fibrosis. Blood plasma samples were taken from eleven patients with IPF and seven healthy volunteers. The lipids of the sample were extracted and subjected to liquid chromatography-tandem mass spectrometry for analysis. Results showed that there is a significant negative correlation between VC and plasma LPA levels, indicating that IPF patients with advanced fibrosis had higher concentration of LPA in their plasma. Average of S1P levels were significantly higher in IPF patients than those in healthy subjects. Although it is not statistically significant, a similar correlation trend that observed in LPA levels also found between VC and S1P levels. These results indicated that plasma LPA and S1P may be associated with deterioration of pulmonary function of IPF patients. J. Med. Invest. 69 : 196-203, August, 2022.


Assuntos
Fibrose Pulmonar Idiopática , Ceramidas , Fibrose , Humanos , Lisofosfolipídeos/análise , Lisofosfolipídeos/fisiologia , Esfingosina/análogos & derivados
10.
FEBS Lett ; 596(23): 3024-3036, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36266963

RESUMO

Glycosylinositol phosphoceramide (GIPC) is a major sphingolipid in the plasma membranes of plants. Previously, we found an enzyme activity that produces phytoceramide 1-phosphate (PC1P) by hydrolysis of the D position of GIPC in cabbage and named this activity as GIPC-phospholipase D (PLD). Here, we purified GIPC-PLD by sequential chromatography from radish roots. Peptide mass fingerprinting analysis revealed that the potential candidate for GIPC-PLD protein was nonspecific phospholipase C3 (NPC3), which has not been characterized as a PLD. The recombinant NPC3 protein obtained by heterologous expression system in Escherichia coli produced PC1P from GIPC and showed essentially the same enzymatic properties as those we characterized as GIPC-PLD in cabbage, radish and Arabidopsis thaliana. From these results, we conclude that NPC3 is one of the enzymes that degrade GIPC.


Assuntos
Arabidopsis , Brassica , Fosfolipase D , Raphanus , Fosfolipase D/genética , Fosfolipase D/química , Raphanus/metabolismo , Fosfolipases/metabolismo , Esfingolipídeos/metabolismo , Brassica/genética , Brassica/química , Arabidopsis/genética , Arabidopsis/metabolismo
11.
Sci Rep ; 12(1): 12150, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840634

RESUMO

Due to having a long history of traditional uses as a functional food, Zingiber zerumbet was selected here to explore the inherent antioxidant and antineoplastic activities of methanolic extract of its rhizome (MEZZR) against Ehrlich ascites carcinoma (EAC) cells. The rich polyphenol containing MEZZR showed a marked DPPH, ABTS, nitric oxide radicals and lipid peroxidation inhibition activity with an IC50 of 3.43 ± 1.25, 11.38 ± 1.39, 23.12 ± 3.39 and 16.47 ± 1.47 µg/ml, respectively, when compared to the standard catechin. In vivo, MEZZR significantly inhibited EAC cell growth, decreased body weight gain, increased life span and restored the altered hematological characteristics of EAC-bearing mice. Moreover, MEZZR induced nuclear condensation and fragmentation, which are notable features of apoptosis as observed by fluorescence microscopy after staining EAC cells of MEZZR-treated mice with Hoechst 33342. Additionally, in vitro, the cell growth inhibition caused by the MEZZR in MTT assay, was remarkably decreased in the presence of caspase-3, -8 and -9 inhibitors. This study thus suggests that MEZZR may possess promising antiproliferative efficacy against EAC cells by inducing cell apoptosis.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Carcinoma de Ehrlich , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ascite , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/patologia , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Rizoma
12.
Bioconjug Chem ; 33(8): 1494-1504, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35875886

RESUMO

Recombinantly produced biotherapeutics hold promise for improving the current standard of care for snakebite envenoming over conventional serotherapy. Nanobodies have performed well in the clinic, and in the context of antivenom, they have shown the ability to neutralize long α-neurotoxins in vivo. Here, we showcase a protein engineering approach to increase the valence and hydrodynamic size of neutralizing nanobodies raised against a long α-neurotoxin (α-cobratoxin) from the venom of the monocled cobraNaja kaouthia. Based on the p53 tetramerization domain, a panel of anti-α-cobratoxin nanobody-p53 fusion proteins, termed Quads, were produced with different valences, inclusion or exclusion of Fc regions for endosomal recycling purposes, hydrodynamic sizes, and spatial arrangements, comprising up to 16 binding sites. Measurements of binding affinity and stoichiometry showed that the nanobody binding affinity was retained when incorporated into the Quad scaffold, and all nanobody domains were accessible for toxin binding, subsequently displaying increased blocking potency in vitro compared to the monomeric format. Moreover, functional assessment using automated patch-clamp assays demonstrated that the nanobody and Quads displayed neutralizing effects against long α-neurotoxins from both N. kaouthia and the forest cobra N. melanoleuca. This engineering approach offers a means of altering the valence, endosomal recyclability, and hydrodynamic size of existing nanobody-based therapeutics in a simple plug-and-play fashion and can thus serve as a technology for researchers tailoring therapeutic properties for improved neutralization of soluble targets such as snake toxins.


Assuntos
Elapidae , Anticorpos de Domínio Único , Animais , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Elapidae/metabolismo , Neurotoxinas/química , Neurotoxinas/metabolismo , Anticorpos de Domínio Único/metabolismo , Proteína Supressora de Tumor p53/metabolismo
13.
MAbs ; 14(1): 2085536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35699567

RESUMO

The monocled cobra (Naja kaouthia) is among the most feared snakes in Southeast Asia due to its toxicity, which is predominantly derived from long-chain α-neurotoxins. The only specific treatment for snakebite envenoming is antivenom based on animal-derived polyclonal antibodies. Despite the lifesaving importance of these medicines, major limitations in safety, supply consistency, and efficacy create a need for improved treatments. Here, we describe the discovery and subsequent optimization of a recombinant human monoclonal immunoglobulin G antibody against α-cobratoxin using phage display technology. Affinity maturation by light chain-shuffling resulted in a significant increase in in vitro neutralization potency and in vivo efficacy. The optimized antibody prevented lethality when incubated with N. kaouthia whole venom prior to intravenous injection. This study is the first to demonstrate neutralization of whole snake venom by a single recombinant monoclonal antibody, thus providing a tantalizing prospect of bringing recombinant antivenoms based on human monoclonal or oligoclonal antibodies to the clinic.


Assuntos
Elapidae , Mordeduras de Serpentes , Animais , Anticorpos Monoclonais/farmacologia , Antivenenos/farmacologia , Venenos Elapídicos/toxicidade , Humanos , Mordeduras de Serpentes/tratamento farmacológico
14.
PLoS One ; 17(3): e0266403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35358287

RESUMO

Plants roots are colonized by soil inhabitants known as arbuscular mycorrhizal fungi (AMF), which increase plant productivity, and enhance carbon storage in the soil. We found mycorrhizal vesicles, arbuscles, and mycelium in the root of more than 89% of the selected plants of University of Rajshahi campus, Bangladesh. The rate of their presence differed in plant to plant of a family and different families. The highest root colonization (98±1.0%) was found to be present in Xanthium strumarium (Asteraceae). Mycorrhiza was not found in the root of Sphagneticola calendulacea (Asteraceae), Cestrun nocturnum (Solanaceae), Acacia nilotica and Acacia catechu (Mimosoidae), Rorippa nasturtium, Brassica oleracla var botrytis (Brasicaceae), Punica granatum (Lythraceae), Tecoma capensis (Bignoniacea), Spinacia oleracia (Chenopodiaceae), Chenopodium album (Goosefoot). Result of soil analysis reveals that the rhizospheric soils were deficient in nutrients which might be suitable for mycorrhizal symbiosis with plants. In the rhizospheric soils, 22 species of Glomus, Scutelospora, Gigaspora, Archaeospora, and Acullospora were found. We also found the genera 'Glomus' dominance in the plant root and rhizospheric soil. So, it can be concluded that the highly colonized roots as well as spores can be used to prepare mycorrhizal inoculum for future purposes.


Assuntos
Acacia , Asteraceae , Chenopodiaceae , Glomeromycota , Micorrizas , Asteraceae/microbiologia , Biodiversidade , Humanos , Raízes de Plantas/microbiologia , Plantas/microbiologia , Prevalência , Rizosfera , Solo , Microbiologia do Solo
15.
Artigo em Inglês | MEDLINE | ID: mdl-34848380

RESUMO

Fatty acids (FAs) longer than C20 are classified as very long-chain fatty acids (VLCFAs). Although biosynthesis and degradation of VLCFAs are important for the development and integrity of the myelin sheath, knowledge on the incorporation of extracellular VLCFAs into the cells is limited due to the experimental difficulty of solubilizing them. In this study, we found that a small amount of isopropanol solubilized VLCFAs in aqueous medium by facilitating the formation of the VLCFA/albumin complex. Using this solubilizing technique, we examined the role of the peroxisome in the uptake and metabolism of VLCFAs in Chinese hamster ovary (CHO) cells. When wild-type CHO cells were incubated with saturated VLCFAs (S-VLCFAs), such as C23:0 FA, C24:0 FA, and C26:0 FA, extensive uptake was observed. Most of the incorporated S-VLCFAs were oxidatively degraded without acylation into cellular lipids. In contrast, in peroxisome-deficient CHO cells uptake of S-VLCFAs was marginal and oxidative metabolism was not observed. Extensive uptake and acylation of monounsaturated (MU)-VLCFAs, such as C24:1 FA and C22:1 FA, were observed in both types of CHO cells. However, oxidative metabolism was evident only in wild-type cells. Similar manners of uptake and metabolism of S-VLCFAs and MU-VLCFAs were observed in IFRS1, a Schwan cell-derived cell line. These results indicate that peroxisome-deficient cells limit intracellular S-VLCFAs at a low level by halting uptake, and as a result, peroxisome-deficient cells almost completely lose the clearance ability of S-VLCFAs accumulated outside of the cells.


Assuntos
Peroxissomos
16.
Science ; 374(6566): 472-478, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34554826

RESUMO

Antibody-based therapeutics and vaccines are essential to combat COVID-19 morbidity and mortality after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple mutations in SARS-CoV-2 that could impair antibody defenses propagated in human-to-human transmission and spillover or spillback events between humans and animals. To develop prevention and therapeutic strategies, we formed an international consortium to map the epitope landscape on the SARS-CoV-2 spike protein, defining and structurally illustrating seven receptor binding domain (RBD)­directed antibody communities with distinct footprints and competition profiles. Pseudovirion-based neutralization assays reveal spike mutations, individually and clustered together in variants, that affect antibody function among the communities. Key classes of RBD-targeted antibodies maintain neutralization activity against these emerging SARS-CoV-2 variants. These results provide a framework for selecting antibody treatment cocktails and understanding how viral variants might affect antibody therapeutic efficacy.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Mapeamento de Epitopos , Epitopos Imunodominantes/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Antígenos Virais/química , Antígenos Virais/imunologia , COVID-19/terapia , Humanos , Epitopos Imunodominantes/química , Ligação Proteica , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química
17.
Antiviral Res ; 194: 105147, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375715

RESUMO

The SARS-CoV-2 receptor angiotensin converting enzyme 2 (ACE2) was previously engineered into a high affinity tetravalent format (ACE2-Fc-TD) that is a potential decoy protein in SARS-CoV-2 infection.We report that this protein shows greatly enhanced binding to SARS-CoV-2 spike proteins of the SARS-CoV-2 variants of concern B.1.1.7 (alpha variant, originally isolated in the United Kingdom) and B.1.351 (beta variant, originally isolated in South Africa) with picomolar compared with nanomolar Kd values. In addition, ACE2-Fc-TD displays greater neutralization of SARS-CoV-2 pseudotype viruses compared to a dimeric ACE2-Fc, with enhanced activity on variant B.1.351. This tetrameric decoy protein would be a valuable addition to SARS-CoV-2 therapeutic approaches, especially where vaccination cannot be used but also should there be any future coronavirus pandemics.


Assuntos
Enzima de Conversão de Angiotensina 2/farmacologia , Antivirais/metabolismo , COVID-19/prevenção & controle , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , COVID-19/enzimologia , COVID-19/virologia , Linhagem Celular , Humanos , Cinética , Mutação , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
18.
Sci Rep ; 11(1): 10617, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012108

RESUMO

Approaches are needed for therapy of the severe acute respiratory syndrome from SARS-CoV-2 coronavirus (COVID-19). Interfering with the interaction of viral antigens with the angiotensin converting enzyme 2 (ACE-2) receptor is a promising strategy by blocking the infection of the coronaviruses into human cells. We have implemented a novel protein engineering technology to produce a super-potent tetravalent form of ACE2, coupled to the human immunoglobulin γ1 Fc region, using a self-assembling, tetramerization domain from p53 protein. This high molecular weight Quad protein (ACE2-Fc-TD) retains binding to the SARS-CoV-2 receptor binding spike protein and can form a complex with the spike protein plus anti-viral antibodies. The ACE2-Fc-TD acts as a powerful decoy protein that out-performs soluble monomeric and dimeric ACE2 proteins and blocks both SARS-CoV-2 pseudovirus and SARS-CoV-2 virus infection with greatly enhanced efficacy. The ACE2 tetrameric protein complex promise to be important for development as decoy therapeutic proteins against COVID-19. In contrast to monoclonal antibodies, ACE2 decoy is unlikely to be affected by mutations in SARS-CoV-2 that are beginning to appear in variant forms. In addition, ACE2 multimeric proteins will be available as therapeutic proteins should new coronaviruses appear in the future because these are likely to interact with ACE2 receptor.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/farmacologia , Antivirais/metabolismo , COVID-19/prevenção & controle , Engenharia de Proteínas/métodos , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Antivirais/química , COVID-19/enzimologia , COVID-19/virologia , Linhagem Celular , Desenho de Fármacos , Haplorrinos , Humanos , Ligação Proteica , Elementos Estruturais de Proteínas , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
19.
Artigo em Inglês | MEDLINE | ID: mdl-34033896

RESUMO

Bioactive N-acylethanolamines (NAEs) include palmitoylethanolamide, oleoylethanolamide, and anandamide, which exert anti-inflammatory, anorexic, and cannabimimetic actions, respectively. The degradation of NAEs has been attributed to two hydrolases, fatty acid amide hydrolase and NAE acid amidase (NAAA). Acid ceramidase (AC) is a lysosomal enzyme that hydrolyzes ceramide (N-acylsphingosine), which resembles NAAA in structure and function. In the present study, we examined the role of AC in the degradation of NAEs. First, we demonstrated that purified recombinant human AC can hydrolyze various NAEs with lauroylethanolamide (C12:0-NAE) as the most reactive NAE substrate. We then used HEK293 cells metabolically labeled with [14C]ethanolamine, and revealed that overexpressed AC lowered the levels of 14C-labeled NAE. As analyzed with liquid chromatography-tandem mass spectrometry, AC overexpression decreased the amounts of different NAE species. Furthermore, suppression of endogenous AC in LNCaP prostate cells by siRNA increased the levels of various NAEs. Lastly, tissue homogenates from mice genetically lacking saposin D, a presumable activator protein of AC, showed much lower hydrolyzing activity for NAE as well as ceramide than the homogenates from wild-type mice. These results demonstrate the ability of AC to hydrolyze NAEs and suggest its physiological role as a third NAE hydrolase.


Assuntos
Ceramidase Ácida/metabolismo , Etanolaminas/metabolismo , Animais , Células HEK293 , Humanos , Hidrólise , Masculino , Camundongos
20.
Lipids ; 56(2): 181-188, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32996178

RESUMO

Sphingomyelin (SM) with N-α-hydroxy fatty acyl residues (hSM) has been shown to occur in mammalian skin and digestive epithelia. However, the metabolism and physiological relevance of this characteristic SM species have not been fully elucidated yet. Here, we show methods for mass spectrometric characterization and quantification of hSM. The hSM in mouse skin was isolated by TLC. The hydroxy hexadecanoyl residue was confirmed by electron impact ionization-induced fragmentation in gas chromatography-mass spectrometry. Mass shift analysis of acetylated hSM by time of flight mass spectrometry revealed the number of hydroxyl groups in the molecule. After correcting the difference in detection efficacy, hSM in mouse skin and intestinal mucosa were quantified by liquid chromatography-tandem mass spectrometry, and found to be 16.5 ± 2.0 and 0.8 ± 0.4 nmol/µmol phospholipid, respectively. The methods described here are applicable to biological experiments on hSM in epithelia of the body surface and digestive tract.


Assuntos
Ácidos Graxos/análise , Pele/química , Esfingomielinas/análise , Animais , Cromatografia Gasosa , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos ICR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA