Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Nutr Sci Vitaminol (Tokyo) ; 70(2): 164-173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38684387

RESUMO

Bitterness and astringency are the aversive tastes in mammals. In humans, aversion to bitterness and astringency may be reduced depending on the eating experience. However, the cellular and molecular mechanisms underlying plasticity in preference to bitter and astringent tastants remain unknown. This study aimed to investigate the preference plasticity to bitter and astringent tea polyphenols, including catechins and tannic acids, in the model animal Caenorhabditis elegans. C. elegans showed avoidance behavior against epigallocatechin gallate (EGCG), tannic acid, and theaflavin. However, they displayed diminishing avoidance against EGCG depending on their EGCG-feeding regime at larval stages. Additionally, the behavioral plasticity in avoiding EGCG required the transcription factor DAF-16/FOXO. Isoform-specific deletion mutant analysis and cell-specific rescue analysis revealed that the function of daf-16 isoform b in AIY interneurons is necessary for experience-dependent behavioral plasticity to EGCG.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Catequina , Fatores de Transcrição Forkhead , Interneurônios , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/metabolismo , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Aprendizagem da Esquiva/efeitos dos fármacos , Biflavonoides/farmacologia , Paladar/efeitos dos fármacos , Chá/química , Comportamento Animal/efeitos dos fármacos , Larva/efeitos dos fármacos
2.
Nutrients ; 15(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37892557

RESUMO

Lactococcus lactis subsp. lactis exhibits probiotic properties in humans. Considering that Caenorhabditis elegans can be used to study the effects of microorganisms on animal behavior, owing to its simple nervous system, we assessed the impacts of two strains of Lactococcus lactis subsp. Lactis-a non-nisin-producing strain, NBRC 100933 (LL100933), and a nisin-producing strain, NBRC 12007 (LL12007)-on the lifespan, locomotion, reproductive capacity of, and lipid accumulation in, C. elegans. The lifespan of adult C. elegans fed a mixture (1:1) of Escherichia coli OP50 and LL100933 or LL12007 did not show a significant increase compared to that of the group fed a standard diet of E. coli OP50. However, the nematodes fed Lactococcus strains showed notable enhancement in their locomotion at all of the tested ages. Further, the beneficial effects of LL100933 and LL12007 were observed in the daf-16 mutants, but not in the skn-1 and pmk-1 mutants. The lipid accumulation in the worms of the Lactococcus-fed group was lower than that in the control group at all experimental ages. Overall, LL100933 and LL12007 enhance the locomotor behavior of C. elegans, likely by modulating the PMK-1/p38 MAPK and SKN-1/Nrf2 transcription factors.


Assuntos
Caenorhabditis elegans , Lactococcus lactis , Animais , Humanos , Caenorhabditis elegans/fisiologia , Escherichia coli , Locomoção , Lipídeos
3.
Mol Pharmacol ; 103(6): 299-310, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36948535

RESUMO

The anthelmintic paraherquamide A acts selectively on the nematode L-type nicotinic acetylcholine receptors (nAChRs), but the mechanism of its selectivity is unknown. This study targeted the basis of paraherquamide A selectivity by determining an X-ray crystal structure of the acetylcholine binding protein (AChBP), a surrogate nAChR ligand-binding domain, complexed with the compound and by measuring its actions on wild-type and mutant Caenorhabditis elegans nematodes and functionally expressed C. elegans nAChRs. Paraherquamide A showed a higher efficacy for the levamisole-sensitive [L-type (UNC-38/UNC-29/UNC-63/LEV-1/LEV-8)] nAChR than the nicotine-sensitive [N-type (ACR-16)] nAChR, a result consistent with in vivo studies on wild-type worms and worms with mutations in subunits of these two classes of receptors. The X-ray crystal structure of the Ls-AChBP-paraherquamide A complex and site-directed amino acid mutation studies showed for the first time that loop C, loop E, and loop F of the orthosteric receptor binding site play critical roles in the observed L-type nAChR selective actions of paraherquamide A. SIGNIFICANCE STATEMENT: Paraherquamide A, an oxindole alkaloid, has been shown to act selectively on the L-type over N-type nAChRs in nematodes, but the mechanism of selectivity is unknown. We have co-crystallized paraherquamide A with the acetylcholine binding protein, a surrogate of nAChRs, and found that structural features of loop C, loop E, and loop F contribute to the L-type nAChR selectivity of the alkaloid. The results create a new platform for the design of anthelmintic drugs targeting cholinergic neurotransmission in parasitic nematodes.


Assuntos
Anti-Helmínticos , Nematoides , Receptores Nicotínicos , Animais , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Caenorhabditis elegans/metabolismo , Acetilcolina/metabolismo , Anti-Helmínticos/farmacologia , Anti-Helmínticos/metabolismo , Levamisol/farmacologia , Nematoides/metabolismo
4.
Biosci Biotechnol Biochem ; 86(3): 374-379, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-34919641

RESUMO

Cutibacterium acnes plays roles in both acne disease and healthy skin ecosystem. We observed that mutations in the tir-1/SARM1 and p38 MAPK cascade genes significantly shortened Caenorhabditis elegans lifespan upon C. acnes SK137 infection. Antimicrobial molecules were induced by SK137 in a TIR-1-dependent manner. These results suggest that defense responses against SK137 involve the TIR-1-p38 MAPK pathway in C. elegans.


Assuntos
Caenorhabditis elegans , Animais
5.
Microbiol Spectr ; 9(2): e0056221, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34704806

RESUMO

Cutibacterium acnes is a human skin-resident bacterium. Although C. acnes maintains skin health by inhibiting invasion from pathogens like Staphylococcus aureus, it also contributes to several diseases, including acne. Studies suggest that differences in genetic background may explain the diverse phenotypes of C. acnes strains. In this study, we investigated the effects of C. acnes strains on the Caenorhabditis elegans life span and observed that some strains shortened the life span, whereas other strains, such as strain HL110PA4, did not alter it. Next, we assessed the effects of C. acnes HL110PA4 on host resistance against S. aureus. The survival time of C. acnes HL110PA4-fed wild-type animals was significantly longer than that of Escherichia coli OP50 control bacterium-fed worms upon infection with S. aureus. Although the survival times of worms harboring mutations at the daf-16/FoxO and skn-1/Nrf2 loci were similar to those of wild-type worms after S. aureus infection, administration of C. acnes failed to improve survival times of tir-1/SARM1, nsy-1/mitogen-activated protein kinase kinase kinase (MAPKKK), sek-1/mitogen-activated protein kinase kinase (MAPKK), and pmk-1/p38 mitogen-activated protein kinase (MAPK) mutants. These results suggest that the TIR-1 and p38 MAPK pathways are involved in conferring host resistance against S. aureus in a C. acnes-mediated manner. IMPORTANCE Cutibacterium acnes is one of the most common bacterial species residing on the human skin. Although the pathogenic properties of C. acnes, such as its association with acne vulgaris, have been widely described, its beneficial aspects have not been well characterized. Our study classifies C. acnes strains based on its pathogenic potential toward the model host C. elegans and reveals that the life span of C. elegans worms fed on C. acnes was consistent with the clinical association of C. acnes ribotypes with acne or nonacne. Furthermore, nonpathogenic C. acnes confers host resistance against the opportunistic pathogen Staphylococcus aureus. Our study provides insights into the impact of C. acnes on the host immune system and its potential roles in the ecosystem of skin microbiota.


Assuntos
Resistência à Doença , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Bactérias , Caenorhabditis elegans , Resistência à Doença/genética , Ecossistema , Escherichia coli , Infecções por Escherichia coli , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Pele/microbiologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA