Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 450, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783216

RESUMO

BACKGROUND: Guava is a fruit prone to rapid spoilage following harvest, attributed to continuous and swift physicochemical transformations, leading to substantial postharvest losses. This study explored the efficacy of xanthan gum (XG) coatings applied at various concentrations (0.25, 0.5, and 0.75%) on guava fruits (Gola cultivar) over a 15-day storage period. RESULTS: The results indicated that XG coatings, particularly at 0.75%, substantially mitigated moisture loss and decay, presenting an optimal concentration. The coated fruits exhibited a modified total soluble soluble solids, an increased total titratable acidity, and an enhanced sugar-acid ratio, collectively enhancing overall quality. Furthermore, the XG coatings demonstrated the remarkable ability to preserve bioactive compounds, such as total phenolics, flavonoids, and antioxidants, while minimizing the levels of oxidative stress markers, such as electrolyte leakage, malondialdehyde, and H2O2. The coatings also influenced cell wall components, maintaining levels of hemicellulose, cellulose, and protopectin while reducing water-soluble pectin. Quantitative analysis of ROS-scavenging enzymes, including superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, revealed significant increases in their activities in the XG-coated fruits compared to those in the control fruits. Specifically, on day 15, the 0.75% XG coating demonstrated the highest SOD and CAT activities while minimizing the reduction in APX activity. Moreover, XG coatings mitigated the activities of fruit-softening enzymes, including pectin methylesterase, polygalacturonase, and cellulase. CONCLUSIONS: This study concludes that XG coatings play a crucial role in preserving postharvest quality of guava fruits by regulating various physiological and biochemical processes. These findings offer valuable insights into the potential application of XG as a natural coating to extend the shelf life and maintain the quality of guava fruits during storage.


Assuntos
Frutas , Polissacarídeos Bacterianos , Psidium , Psidium/química , Polissacarídeos Bacterianos/farmacologia , Frutas/química , Frutas/efeitos dos fármacos , Conservação de Alimentos/métodos , Antioxidantes/metabolismo
2.
Sci Rep ; 14(1): 1446, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228714

RESUMO

Peroxidases (PRXs) play multifaceted roles in plant growth, development, and stress responses. Here, we present a comprehensive analysis of the PRX gene family in guava, a globally significant fruit. In the guava genome, we identified 37 PRX genes, a number lower than that of Arabidopsis, suggesting a distinctive gene family expansion pattern. Phylogenetic analysis unveiled close relationships with Arabidopsis PRXs, with 12 PgPRX genes forming ortholog pairs, indicating a specific expansion pattern. Predictions placed most PRX proteins in the chloroplast and extracellular regions. Structural analysis of PgPRX proteins revealed commonalities in domain structures and motif organization. Synteny analysis underscored the dynamic role of segmental duplication in the evolution of guava's PRX genes. We explored the dynamic expression of PgPRX genes across guava tissues, exposing functional diversity. Furthermore, we examined changes in peroxidase levels and gene expressions during postharvest fruit storage, providing insights for preserving fruit quality. This study offers an initial genome-wide identification and characterization of Class III peroxidases in guava, laying the foundation for future functional analyses.


Assuntos
Arabidopsis , Psidium , Psidium/genética , Arabidopsis/genética , Filogenia , Genômica , Peroxidases/genética , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/química , Regulação da Expressão Gênica de Plantas , Genoma de Planta
3.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279284

RESUMO

This study explores the impact of RNAi in terms of selectively inhibiting the expression of the OsBBTI5 gene, with the primary objective of uncovering its involvement in the molecular mechanisms associated with salt tolerance in rice. OsBBTI5, belonging to the Bowman-Birk inhibitor (BBI) family gene, is known for its involvement in plant stress responses. The gene was successfully cloned from rice, exhibiting transcriptional self-activation in yeast. A yeast two-hybrid assay confirmed its specific binding to OsAPX2 (an ascorbate peroxidase gene). Transgenic OsBBTI5-RNAi plants displayed insensitivity to varying concentrations of 24-epibrassinolide in the brassinosteroid sensitivity assay. However, they showed reduced root and plant height at high concentrations (10 and 100 µM) of GA3 immersion. Enzyme activity assays revealed increased peroxidase (POD) and superoxide dismutase (SOD) activities and decreased malondialdehyde (MDA) content under 40-60 mM NaCl. Transcriptomic analysis indicated a significant upregulation of photosynthesis-related genes in transgenic plants under salt stress compared to the wild type. Notably, this study provides novel insights, suggesting that the BBI gene is part of the BR signaling pathway, and that OsBBTI5 potentially enhances stress tolerance in transgenic plants through interaction with the salt stress-related gene OsAPX2.


Assuntos
Oryza , Tolerância ao Sal , Tolerância ao Sal/genética , Oryza/metabolismo , Interferência de RNA , Estresse Salino/genética , Peroxidases/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Int J Biol Macromol ; 256(Pt 1): 128429, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008137

RESUMO

Mango is a climacteric fruit that ripens quickly after harvest due to its climacteric nature. Edible coatings have been reported to delay the ripening of various harvested fruit. The efficacy of the applied edible coatings could be improved by using in combination as a layer-by-layer (LBL) approach. So, the influence of LBL application of chitosan (CH) and carboxymethyl cellulose (CMC) was studied on mangoes during postharvest storage at 15 °C for 20 days. Mangoes were coated with monolayers of CH (1 % w/v) and CMC (1 % w/v) as well as LBL application of CH and CMC and were compared with control. The treatment of mangoes with CH and CMC-based LBL treatment resulted in lower decay percentage and weight loss along with higher total chlorophyll pigments and suppressed total carotenoid accumulation. The LBL application of CH and CMC showed lower activity of chlorophyll degrading such as chlorophyllase (CPS), pheophytinase (Phe), Mg-dechalatase (MGD) and chlorophyll degrading peroxidase (Chl-POD) enzymes as well as reduced changes in b*, a* and L* along with a suppressed increase in ethylene (EP) and CO2 production (CPR) rates having higher antioxidant such as catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and superoxide dismutase (SOD) enzymes activity. In addition, mangoes coated with LBL treatment of CH and CMC exhibited lower water-soluble pectin (WSP) and higher protopectin (PP) having higher concentrations of chelate soluble (CSP) and sodium carbonate-soluble pectin (SCP). Similarly, LBL-coated mangoes showed significantly higher hemicellulose (HCLS) and cellulose (CLS) contents in contrast with control. It was observed that mangoes coated with CH and CMC-based LBL coating exhibited higher flesh firmness and showed suppressed cellulase (CS), pectin methylesterase (PME), polygalacturonase (PG) and ß-galactosidase (ß-Gal) enzymes activity. The concentrations of total soluble solids and ripening index were markedly lower and titratable acidity was higher in the LBL-based coating treatment in comparison with control. In conclusion, LBL treatment based on CH and CMC coatings could be used for the delay of ripening and softening of harvested mangoes.


Assuntos
Quitosana , Mangifera , Carboximetilcelulose Sódica/farmacologia , Quitosana/farmacologia , Frutas , Polissacarídeos/farmacologia , Pectinas/farmacologia , Peroxidase , Parede Celular , Clorofila
5.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958684

RESUMO

Utilizing carbon quantum dots (CQDs) as biomaterials for delivering small substances has gained significant attention in recent research. However, the interactions and mechanisms of action of CQDs on plants have received relatively little focus. Herein, we investigated the transportation of CQDs into various organs of Arabidopsis thaliana (L.) Heynh. via the vessel system, leading to the epigenetic inheritance of Argonaute family genes. Our findings reveal that CQDs may interact with microRNAs (miRNAs), leading to the repression of post-transcriptional regulation of target genes in the cytoplasm. Transcriptome and quantitative PCR analyses demonstrated consistent gene expression levels in offspring. Moreover, microscopic observations illustrated rapid CQD localization on cell membranes and nuclei, with increased nuclear entry at higher concentrations. Notably, our study identified an alternative regulatory microRNA, microRNA172D, for the Argonaute family genes through methylation analysis, shedding light on the connection between CQDs and microRNAs.


Assuntos
Arabidopsis , MicroRNAs , Pontos Quânticos , Carbono , Arabidopsis/genética , MicroRNAs/genética , Expressão Gênica
6.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834456

RESUMO

The color of the chili fruit is an important factor that determines the quality of the chili, as red chilies are more popular among consumers. The accumulation of capsanthin is the main cause of reddening of the chili fruit. Capsanthin is an important metabolite in carotenoid metabolism, and its production level is closely linked to the expression of the genes for capsanthin/capsorubin synthase (CCS) and carotenoid hydroxylase (CrtZ). We reported for the first time that the synthesis of capsanthin in chili was enhanced by using a geminivirus (Bean Yellow Dwarf Virus). By expressing heterologous ß-carotenoid hydroxylase (CrtZ) and ß-carotenoid ketolase (CrtW) using codon optimization, the transcription level of the CCS gene and endogenous CrtZ was directly increased. This leads to the accumulation of a huge amount of capsanthin in a very short period of time. Our results provide a platform for the rapid enhancement of endogenous CCS activity and capsanthin production using geminivirus in plants.


Assuntos
Capsicum , Geminiviridae , Proteínas de Plantas/genética , Capsicum/genética , Capsicum/metabolismo , Carotenoides/metabolismo , Oxigenases de Função Mista/metabolismo , Geminiviridae/genética , Geminiviridae/metabolismo
7.
Plants (Basel) ; 12(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37836253

RESUMO

The Chinese plum (Prunus salicina L.) is a fruit tree belonging to the Rosaceae family, native to south-eastern China and widely cultivated throughout the world. Fruit sugar metabolism and color change is an important physiological behavior that directly determines flavor and aroma. Our study analyzed six stages of fruit growth and development using RNA-seq, yielding a total of 14,973 DEGs, and further evaluation of key DEGs revealed a focus on sugar metabolism, flavonoid biosynthesis, carotenoid biosynthesis, and photosynthesis. Using GO and KEGG to enrich differential genes in the pathway, we selected 107 differential genes and obtained 49 significant differential genes related to glucose metabolism. The results of the correlation analyses indicated that two genes of the SWEET family, evm.TU.Chr1.3663 (PsSWEET9) and evm.TU.Chr4.676 (PsSWEET2), could be closely related to the composition of soluble sugars, which was also confirmed in the ethylene treatment experiments. In addition, analysis of the TOP 20 pathways between different growth stages and the green stage, as well as transient overexpression in chili, suggested that capsanthin/capsorubin synthase (PsCCS) of the carotenoid biosynthetic pathway contributed to the color change of plum fruit. These findings provide an insight into the molecular mechanisms involved in the ripening and color change of plum fruit.

8.
Plant Physiol Biochem ; 201: 107829, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329690

RESUMO

Soluble sugars and organic acids are the most abundant components in ripe fruits, and they play critical roles in the development of fruit flavor and taste. In this study, loquat trees were sprayed with 0.1, 0.2 and 0.3% zinc sulphate. The contents of soluble sugars and organic acids were determined using HPLC-RID and UPLC-MS, respectively. The activities of key enzymes involved in sugar-acid metabolism were measured and expression profiling of related genes was done using RT-qPCR. The results revealed that 0.1% zinc sulphate was a promising treatment among other Zn applications with respect to the increased levels of soluble sugars and decreased acid contents in loquats. Correlation analysis showed that the enzymes i.e., SPS, SS, FK, and HK were may be involved in the regulation of fructose and glucose metabolism in the fruit pulp of loquat. While, the activity of NADP-ME showed negative and NAD-MDH showed a positive correlation with malic acid content. Meanwhile, EjSPS1-4, EjSS2-4, EjHK1-3, and EjFK1-6 may play an important role in soluble sugar metabolism in the pulp of loquat fruits. Similarly, EjPEPC2, EjPEPC3, EjNAD-MDH1, EjNAD-MDH3-5, EjNAD-MDH6 and EjNAD-MDH13 may have a vital contribution to malic acid biosynthesis in loquat fruits. This study provides new insights for future elucidation of key mechanisms regulating soluble sugars and malic acid biosynthesis in loquats.

9.
Genes (Basel) ; 14(3)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36980831

RESUMO

The bulb formation of Lilium is affected by many physiological and biochemical phenomena, including flower bud differentiation, starch and sucrose accumulation, photoperiod, carbon fixation, plant hormone transduction, etc. The transcriptome analysis of flower buds of Lilium hybrid 'Siberia' at different maturity stages showed that floral bud formation is associated with the accumulation of anthocyanins. The results of HPLC-MS showed that cyanidin is the major anthocyanin found in Lilium 'Siberia'. Transcriptome KEGG enrichment analysis and qRT-PCR validation showed that two genes related to flavonoid biosynthesis (LhANS-rr1 and LhDFR) were significantly up-regulated. The functional analysis of differential genes revealed that LhMYB114 was directly related to anthocyanin accumulation among 19 MYB transcription factors. Furthermore, the qRT-PCR results suggested that their expression patterns were very similar at different developmental stages of the lily bulbs. Virus-induced gene silencing (VIGS) revealed that down-regulation of LhANS-rr1, LhDFR, and LhMYB114 could directly lead to a decrease in anthocyanin accumulation, turning the purple phenotype into a white color. Moreover, this is the first report to reveal that LhMYB114 can regulate anthocyanin accumulation at the mature stage of lily bulbs. The accumulation of anthocyanins is an important sign of lily maturity. Therefore, these findings have laid a solid theoretical foundation for further discussion on lily bulb development in the future.


Assuntos
Flores , Lilium , Flores/genética , Flores/metabolismo , Lilium/genética , Lilium/metabolismo , Antocianinas , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
10.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499579

RESUMO

The formation of underground stem bulblets in lilies is a complex biological process which is key in their micropropagation. Generally, it involves a stem-to-bulblet transition; however, the underlying mechanism remains elusive. It is important to understand the regulatory mechanism of bulblet formation for the reproductive efficiency of Lilium. In this study, we investigated the regulatory mechanism of underground stem bulblet formation under different conditions regarding the gravity point angle of the stem, i.e., vertical (control), horizontal, and slanting. The horizontal and slanting group displayed better formation of bulblets in terms of quality and quantity compared with the control group. A transcriptome analysis revealed that sucrose and starch were key energy sources for bulblet formation, auxin and cytokinin likely promoted bulblet formation, and gibberellin inhibited bulblet formation. Based on transcriptome analysis, we identified the LoLOB18 gene, a homolog to AtLOB18, which has been proven to be related to embryogenic development. We established the stem bud growth tissue culture system of Lilium and silenced the LoLOb18 gene using the VIGS system. The results showed that the bulblet induction was reduced with down-regulation of LoLOb18, indicating the involvement of LoLOb18 in stem bulblet formation in lilies. Our research lays a solid foundation for further molecular studies on stem bulblet formation of lilies.


Assuntos
Lilium , Lilium/genética , Perfilação da Expressão Gênica , Ácidos Indolacéticos , Sibéria , Regulação da Expressão Gênica de Plantas , Transcriptoma
11.
Front Plant Sci ; 13: 1039360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340346

RESUMO

Soluble sugars and organic acids are the most abundant components in ripe fruits, and they play critical roles in the development of fruit flavor and taste. Some loquat cultivars have high acid content which seriously affect the quality of fruit and reduce the value of commodity. Consequently, studying the physiological mechanism of sugar-acid metabolism in loquat can clarify the mechanism of their formation, accumulation and degradation in the fruit. Minerals application has been reported as a promising way to improve sugar-acid balance of the fruits. In this study, loquat trees were foliar sprayed with 0.1, 0.2 and 0.3% borax, and changes in soluble sugars and organic acids were recorded. The contents of soluble sugars and organic acids were determined using HPLC-RID and UPLC-MS, respectively. The activities of enzymes responsible for the metabolism of sugars and acids were quantified and expressions of related genes were determined using quantitative real-time PCR. The results revealed that 0.2% borax was a promising treatment among other B applications for the increased levels of soluble sugars and decreased acid contents in loquats. Correlation analysis showed that the enzymes i.e., SPS, SS, FK, and HK were may be involved in the regulation of fructose and glucose metabolism in the fruit pulp of loquat. While the activity of NADP-ME showed negative and NAD-MDH showed a positive correlation with malic acid content. Meanwhile, EjSPS1, EjSPS3, EjSS3, EjHK1, EjHK3, EjFK1, EjFK2, EjFK5, and EjFK6 may play an important role in soluble sugars metabolism in fruit pulp of loquat. Similarly, EjPEPC2, EjPEPC3, EjNAD-ME1, EjNAD-MDH1, EjNAD-MDH5-8, EjNAD-MDH10, and EjNAD-MDH13 may have a vital contribution to malic acid biosynthesis in loquat fruits. This study provides new insights for future elucidation of key mechanisms regulating soluble sugars and malic acid biosynthesis in loquats.

12.
Front Plant Sci ; 13: 918038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161001

RESUMO

Due to advances in the industrial development of light-emitting diodes (LEDs), much research has been conducted in recent years to get a better understanding of how plants respond to these light sources. This study investigated the effects of different LED-based light regimes on strawberry plant development and performance. The photosynthetic pigment content, biochemical constituents, and growth characteristics of strawberry plants were investigated using a combination of different light intensities (150, 200, and 250 µmol m-2 s-1), qualities (red, green, and blue LEDs), and photoperiods (14/10 h, 16/8 h, and 12/12 h light/dark cycles) compared to the same treatment with white fluorescent light. Plant height, root length, shoot fresh and dry weight, chlorophyll a, total chlorophyll/carotenoid content, and most plant yield parameters were highest when illuminated with LM7 [intensity (250 µmol m-2 s-1) + quality (70% red/30% blue LED light combination) + photoperiod (16/8 h light/dark cycles)]. The best results for the effective quantum yield of PSII photochemistry Y(II), photochemical quenching coefficient (qP), and electron transport ratio (ETR) were obtained with LM8 illumination [intensity (250 µmol m-2 s-1) + quality (50% red/20% green/30% blue LED light combination) + photoperiod (12 h/12 h light/dark cycles)]. We conclude that strawberry plants require prolonged and high light intensities with a high red-light component for maximum performance and biomass production.

13.
Biology (Basel) ; 11(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892948

RESUMO

Plant promoters play a vital role in the initiation and regulation of gene transcription. In this study, a rice protein/gene of unknown expression, named Os8GSX7, was gained from a rice T-DNA capture line. The semi-quantitative RT-PCR analysis showed that the gene was only expressed in root, glume, and flower, but not in stem, leaf, embryo, and endosperm of japonica rice. The GUS activity analysis of the GSX7R promoter showed that it was a reverse green tissue expression promoter, except in endosperm. The forward promoter of GSX7 cannot normally drive the expression of the foreign GUS gene, while the reverse promoter of GSX7 is a green tissue-specific expression promoter, which can drive the expression of the foreign GUS gene. The region from -2097 to -1543 bp was the key region for controlling the green tissue-specific expression. The regulatory sequences with different lengths from the 2097 bp reverse sequence from the upstream region of the Os8GSX7 were fused with the GUS reporter gene and stably expressed in rice. Furthermore, transgenic rice plants carrying Cry1Ab encoding Bacillus thuringiensis endotoxin, regulated by GSX7R, were resistant to yellow stem borer. The analysis suggested that 10 light responsive elements of tissue-specific expression were found, including ACE, Box4, CAT-box, G-Box, G-box, GATA motif, GC motif, I-box, Sp1, and chs-unit1 M1. In addition, the results of 5' and 3' deletions further speculated that ACE and I-box may be the key elements for determining the green tissue-specific expression of GSX7R promoter.

14.
Sci Rep ; 12(1): 11324, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790780

RESUMO

Phytohormones mediate physiological, morphological, and enzymatic responses and are important regulators of plant growth and development at different stages. Even though temperature is one of the most important abiotic stressors for plant development and production, a spike in the temperature may have disastrous repercussions for crop performance. Physiology and growth of two tomato genotypes ('Ahmar' and 'Roma') were studied in two growth chambers (25 and 45 °C) when gibberellic acid (GA3) was applied exogenously. After the 45 days of planting, tomato plants were sprayed with GA3 at concentrations of 25, 50, 75, and 100 mg L-1, whereas untreated plants were kept as control. Under both temperature conditions, shoot and root biomass was greatest in 'Roma' plants receiving 75 mg L-1 GA3, followed by 50 mg L-1 GA3. Maximum CO2 index, photosynthetic rate, transpiration rate, and greenness index were recorded in 'Roma' plants cultivated at 25 °C, demonstrating good effects of GA3 on tomato physiology. Likewise, GA3 enhanced the proline, nitrogen, phosphorus, and potassium levels in the leaves of both genotypes at both temperatures. Foliar-sprayed GA3 up to 100 mg L-1 alleviated the oxidative stress, as inferred from the lower concentrations of MDA and H2O2, and boosted the activities of superoxide dismutase, peroxidase, catalase. The difference between control and GA3-treated heat-stressed plants suggests that GA3 may have a function in mitigating heat stress. Overall, our findings indicate that 75 mg L-1 of GA3 is the optimal dosage to reduce heat stress in tomatoes and improve their morphological, physiological, and biochemical characteristics.


Assuntos
Solanum lycopersicum , Giberelinas/farmacologia , Resposta ao Choque Térmico , Solanum lycopersicum/genética , Fotossíntese
15.
Sci Rep ; 12(1): 6363, 2022 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-35430590

RESUMO

The current study was performed on 8 years old "Succary" pomegranate cultivar (Punica granatum L.) during the 2019 and 2020 seasons. One hundred pomegranate trees were chosen and sprayed three times at the beginning of flowering, full bloom, and 1 month later with the following treatments: water as control, 0.025, 0.05 and 0.1 mg/L Se; 5 mL/L, 7.5 and 10 mL/L Ag NPs, and 0.5, 1 and 2 mg/L K2Si2O5. The results showed that spraying of SE, Ag NPs, and K2Si2O5 ameliorated the shoot length, diameter, leaf chlorophyll content, set of fruiting percentage, and fruit yield per tree and hectare compared to control through studying seasons. Moreover, they improved the fruit weight, length, and diameter, as well as total soluble solids, total, reduced, and non-reduced sugars percent, while they lessened the juice acidity percentage compared to control. The most obvious results were noticed with Se at 0.1 mg/L, Ag NPs at 10 mL/L, and K2Si2O5 and K2Si2O5 in both experimental seasons over the other applied treatments. By HPLC analysis, peel extracts showed the presence of several bioactive compounds of catechol, syringic acid, p-coumaric acid, benzoic acid, caffeic acid, pyrogallol, gallic acid, ferulic acid, salicylic acid, cinnamic acid, and ellagic acid. The extracts applied to Melia azedarach wood showed promising antifungal activity against Rhizoctonia solani and were considered wood-biofingicides.


Assuntos
Fungicidas Industriais , Punica granatum , Selênio , Secas , Frutas , Fungicidas Industriais/farmacologia , Extratos Vegetais/farmacologia , Potássio , Silicatos/farmacologia , Árvores
16.
Sci Rep ; 12(1): 852, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039577

RESUMO

Light is one of the most important limiting factors for photosynthesis and the production of plants, especially in the regions where natural environmental conditions do not provide sufficient sunlight, and there is a great dependence on artificial lighting to grow plants and produce food. The influence of light intensity, quality, and photoperiod on photosynthetic pigments content and some biochemical and growth traits of cucumber seedlings grown under controlled conditions was investigated. An orthogonal design based on a combination of different light irradiances, ratio of LEDs and photoperiods was used. Treaments consisted of three light irradiance regimes (80, 100, and 150 µmol m-2 s-1) provided by light-emitting diodes (LEDs) of different ratios of red and blue (R:B) (30:70, 50:50, and 70:30) and three different photoperiods (10/14, 12/12, and 14/10 h). The white light was used as a control/reference. Plant height, hypocotyl length, stem diameter, leaf area, and soluble sugar content were highest when exposed to LM9 (150 µmol m-2 s-1; R70:B30; 12/12 h) light mode, while the lowest values for the above parameters were obtained under LM1 (80 µmol m-2 s-1; R30:B70; 10/14 h). Higher pigments contents (chlorophyll a, chlorophyll b, and carotenoid) were obtained when light regime LM9 (150 µmol m-2 s-1; R70:B30; 12/12 h) was applied. In general, cucumber seedlings grown under the LM9 regime showed a significant increase in growth as well as photosynthetic capacity. It seems that the content of photosynthetic pigments is the key factor responsible for the performance of cucumber seedlings grown under different lighting modes, compared to other traits studied. We recommend monitoring the content of chlorophyll a, b, and their ratio value when studying the light requirement of cucumber plants.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/efeitos da radiação , Luz , Iluminação/métodos , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Clorofila/metabolismo , Clorofila A/metabolismo , Cucumis sativus/metabolismo , Relação Dose-Resposta à Radiação , Fotoperíodo , Fotossíntese/efeitos da radiação , Pigmentos Biológicos/metabolismo , Plântula/metabolismo
17.
Plants (Basel) ; 10(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34961175

RESUMO

Bagging regulates the fruit microenvironment and improves the quality and market value of fruits. It is a safe and ecofriendly technique to protect fruits from insect/pest infestation and multiple biotic and abiotic stresses. In the current study, the influence of fruit bagging was evaluated on the development and quality of loquat fruits. Fruits from a healthy loquat orchard (Cv. Zaozhong No.6), located in Fujian, China, were enveloped in paper (T1), aluminum (T2), and aluminum-polyethylene bags (T3), while unbagged fruits were maintained as control (T0). In general, fruit bagging improved fruit quality in terms of fruit physiological and biochemical attributes and protected fruits from physical damage. In particular, aluminum-polyethylene bagging enhanced fruit weight, length, and width by 1.37-, 1.18-, and 1.13-fold, respectively. Loquat fruits bagged with paper bags exhibited the maximum soluble sugar and lowest titratable acid content. Fruits treated with paper and aluminum-ethylene bags showed twofold higher sugar-acid ratio as compared to control. Aluminum-polyethylene bagging caused 66.67%, 55.56%, and 33.33% reductions in skin burn, fruit rotting, and black spot of loquat. The fruits bagged in aluminum and aluminum-polyethylene did not show insect or bird damage, while unbagged fruits had 14.70% and 17.65% insect and bird damage, respectively. Overall, the results suggest that paper, aluminum, and aluminum-polyethylene bagging improved fruit health by 75%, 131%, and 144%, respectively, as compared to control. To delineate bagging type-dependent effects, principal component analysis was performed. Paper bagging was positively correlated with fruit firmness, rotting, soluble sugars, sugar-acid ratio, and proline content. Aluminum bagging was highly associated with improvements in titratable acids, cystine, and methionine. Aluminum-polyethylene bags were correlated with fruit weight, size, peel thickness, edible rate, and certain amino acids.

18.
Plants (Basel) ; 10(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834602

RESUMO

Flavonoids play a key role as a secondary antioxidant defense system against different biotic and abiotic stresses, and also act as coloring compounds in various fruiting plants. In this study, fruit samples of purple (Passiflora edulis f. edulis) and yellow (Passiflora edulis f. flavicarpa) passion fruit were collected at five developmental stages (i.e., fruitlet, green, veraison, maturation, and ripening stage) from an orchard located at Nanping, Fujian, China. The contents of flavonoid, anthocyanin, proanthocyanin, and their metabolites were determined using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS), activities of key enzymes involved in flavonoid metabolism were measured, and expression profiling of related genes was done using quantitative real-time PCR (qRT-PCR). The results revealed that total flavonoids, anthocyanins, and procyanidins were found to be increased in the fruit peel of both cultivars with fruit maturity. Total flavonoids, anthocyanins, procyanidins, flavonoid metabolites (i.e., rutin, luteolin, and quercetin), and anthocyanin metabolites (i.e., cyanidin-3-O-glucoside chloride, peonidin-3-O-glucoside, and pelargonidin-3-O-glucoside) were found abundant in the peel of purple passion fruit, as compared to yellow passion fruit. Principle component analysis showed that the enzymes, i.e., C4H, 4CL, UFGT, and GST were maybe involved in the regulation of flavonoids metabolism in the peel of passion fruit cultivars. Meanwhile, PePAL4, Pe4CL2,3, PeCHS2, and PeGST7 may play an important role in flavonoid metabolism in fruit peel of the passion fruit. This study provides new insights for future elucidation of key mechanisms regulating flavonoids biosynthesis in passion fruit.

19.
Plants (Basel) ; 10(10)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34685914

RESUMO

Melaleuca is one of the genera of the Myrtaceae family enriched in tea tree oil (TTO). Tea tree oils of Melaleuca bracteata and Melaleuca alternifolia are of prime importance and have antioxidant and antimicrobial properties. Terpinen-4-ol and 1-8 cineole are major constituents of M. alternifolia oil. The percentages of the compounds in the oils can slightly vary according to the region of plant harvest, the distillation technique, or the part of the plant used for oil extraction. TTO has a bactericidal effect against various bacterial species such as Bacillus cereus, B. subtilis, E. coli, Pseudomonas putida, and S. aureus. Several reports proved that this essential oil is also effective against fungal strains of Fusarium, Aspergillus, and Candida species. It also has antioxidant properties such as radical scavenging activity and reducing power. The antioxidant properties of TTO at a concentration of 30 mM were observed to be greater than those of butylated hydroxytoluene (BHT), commonly used as a synthetic antioxidant. TTO is also an effective organic fungicide, herbicide, and insecticide for use in the agriculture sector. Postharvest application of the oil has been found efficient on sweet basil, citrus, and strawberry. It is concluded that tea tree oil has the potential to be used in the food, agriculture, and pharmaceutical industries as a natural antimicrobial and preservative agent. This review provides comprehensive information regarding the antioxidant and antimicrobial activities of tea tree oil and its potential applications in agriculture.

20.
Sci Rep ; 11(1): 20967, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697330

RESUMO

Due to progress in the industrial development of light-emitting diodes (LEDs), much work has been dedicated to understanding the reaction of plants to these light sources in recent years. In this study, the effect of different LED-based light regimes on growth and performance of passion fruit (Passiflora edulis) seedlings was investigated. Combinations of different light irradiances (50, 100, and 200 µmol m-2 s-1), quality (red, green, and blue light-emitting LEDs), and photoperiods (10 h/14 h, 12 h/12 h and 14 h/10 h light/dark cycles) were used to investigate the photosynthetic pigment contents, antioxidants and growth traits of passion fruit seedlings in comparison to the same treatment white fluorescent light. Light irradiance of 100 µmol m-2 s-1 of a 30% red/70% blue LED light combination and 12 h/12 h light/dark cycles showed the best results for plant height, stem diameter, number of leaves, internode distance, and fresh/dry shoot/root weights. 14 h/10 h light/dark cycles with the same LED light combination promoted antioxidant enzyme activities and the accumulation of phenols and flavonoids. In contrast, lower light irradiance (50 µmol m-2 s-1) had negative effects on most of the parameters. We conclude that passion fruit seedlings' optimal performance and biomass production requires long and high light irradiances with a high blue light portion.


Assuntos
Antioxidantes/metabolismo , Flavonoides/biossíntese , Passiflora/crescimento & desenvolvimento , Fenóis/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Passiflora/química , Passiflora/efeitos da radiação , Fotoperíodo , Fotossíntese , Proteínas de Plantas/metabolismo , Plântula/química , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA