Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 191: 105357, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963932

RESUMO

Saponins have been used as biopesticides. The objective of the present study is to investigate the toxic effects of Saponin against Biomphalaria alexandrina snails. Results showed that Saponin exhibited a molluscicidal activity against adult B. alexandrina snails at LC50 (70.05 mg/l) and had a larvicidal effect on the free larval stages of Schistosoma mansoni. To evaluate the lethal effects, snails were exposed to either LC10 (51.8 mg/l) or LC25 (60.4 mg/l) concentrations of Saponin. The survival, the infection rates, protein, albumin, and total fat levels were decreased, while glucose levels were increased in exposed snails compared to control snails. Also, these concentrations significantly raised Malondialdehyde (MDA) and Glutathione S Transferase (GST) levels, whereas reduced Superoxide dismutase (SOD) activity and the total antioxidant capacity (TAC) in exposed snails. Furthermore, these concentrations resulted in endocrine disruptions where it caused a significant increase in testosterone (T) level; while a significant decrease in Estradiol (E2) levels were noticed. As for Estrogen (E) level, it was increased after exposure to LC10 Saponin concentration while after exposure to LC25 concentration, it was decreased. Also, LC10 and LC25 concentrations of Saponin caused a genotoxic effect and down-regulation of metabolic cycles in the snails. In conclusion, Saponins caused deleterious effects on the intermediate host of schistosomiasis mansoni. Therefore, B. alexandrina snails could be used as models to screen the toxic effects of Saponins in the aquatic environment and if it was used as a molluscicide, it should be used cautiously and under controlled circumstances.


Assuntos
Biomphalaria , Moluscocidas , Saponinas , Animais , Biomphalaria/metabolismo , Schistosoma mansoni , Larva , Saponinas/toxicidade , Saponinas/metabolismo , Caramujos , Moluscocidas/toxicidade
2.
Pharm Biol ; 60(1): 1899-1914, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36200747

RESUMO

CONTEXT: Thais savignyi Deshayes (Muricidae) is widely distributed in the Red Sea. Its abundance and the history of Muricidae in traditional medicine make it a tempting target for investigation. OBJECTIVE: To investigate the chemical profile and biological activities of T. savignyi tissue extracts. MATERIALS AND METHODS: Methanol, ethanol, acetone, and ethyl acetate extracts from T. savignyi tissue were compared in their antioxidant by total antioxidant capacity, DPPH free radical scavenging, and total phenolic content. In addition, the antimicrobial, and antibiofilm properties (at 250 µg/mL) of the extracts were tested against Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella pneumoniae, Staphylococcus aureus, and Candida albicans. The antioxidant extract with greatest activity was assessed for cytotoxicity (range 0.4-100 µg/mL) against 3 human cancer cell lines (UO-31, A549 and A431), and its chemical composition was investigated using GC-MS. Moreover, docking simulation was performed to predict its constituents' binding modes/scores to the active sites of thymidylate kinase. RESULTS: The ethyl acetate extract (Ts-EtOAc) showed the highest total antioxidant capacity (551.33 mg AAE/g dry weight), total phenolics (254.46 mg GAE/g dry weight), and DPPH scavenging (IC50= 24.0 µg/mL). Ts-EtOAc exhibited strong antibacterial (MIC: 3.9 µg/mL against K. pneumoniae), antibiofilm (MIC: 7.81 µg/mL against S. aureus), and antifungal (MIC: 3.9 µg/mL against C. albicans) activities and considerable cytotoxicity against cancer cells (UO-31: IC50= 19.96 ± 0.93, A549: IC50= 25.04 ± 1.15 µg/mL). GC-MS identified multiple bioactive metabolites in Ts-EtOAc extract belonging to miscellaneous chemical classes. Molecular docking studies revealed that the constituents of Ts-EtOAc have antibacterial potential. DISCUSSION AND CONCLUSIONS: T. savignyi extract has considerable antimicrobial and cytotoxic activities. Further studies are needed to isolate the active constituents of this snail for comprehensive drug discovery tests.


Assuntos
Anti-Infecciosos , Antioxidantes , Acetatos , Acetona , Antibacterianos , Anti-Infecciosos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Etanol , Radicais Livres , Humanos , Metanol , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Fenóis/farmacologia , Extratos Vegetais , Staphylococcus aureus , Tailândia , Extratos de Tecidos
3.
Exp Parasitol ; 213: 107887, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32224062

RESUMO

Infection with trematodes produces physiological and behavioural changes in intermediate snail hosts. One response to infection is parasitic castration, in which energy required for reproduction of the host is thought to be redirected to promote development and multiplication of the parasite. This study investigated some reproductive and biochemical parameters in the nervous (CNS) and ovotestis (OT) tissues of Biomphalaria alexandrina during the course of Schistosoma mansoni infection. Antioxidant and oxidative stress parameters including catalase (CAT), nitric oxide (NO) and lipid peroxidation (MDA) were measured. Levels of steroid hormones, including testosterone, progesterone and estradiol, were also assessed. Finally, flow cytometry was used to compare measures of apoptosis between control snails and those shedding cercariae by examining mitochondrial membrane potential with the stain 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide (JC-1) and poly(ADP-ribose) polymerase (PARP). Infection with S. mansoni caused a 47.7% reduction in the net reproductive rate (Ro) of B. alexandrina. CAT activity was increased in the CNS at 21 days post infection (dpi) but by 28 dpi it was reduced below control values. Also, CAT activity increased significantly in the OT at 14, 21 and 28 dpi. In CNS tissues, NO levels were reduced at 7 dpi, increased at 14 and 21 dpi, and reduced again at 28 dpi. The overall level of lipid peroxidation gradually increased during the course of infection to reach its highest levels at 28 dpi. Steroid hormone measurements showed that concentrations of testosterone and estradiol were reduced in the CNS tissues at 28 dpi, while those of progesterone were slightly increased in the CNS and OT tissues. The percentage of cells that positively stained with JC-1was significantly increased in CNS and OT tissues of infected snails while the percentage of cells positively stained with PARP was decreased compared to controls. Together, these findings indicate that infection initiates diverse biochemical and hormonal changes leading to loss of cells responsible for egg laying and reproduction in B. alexandrina.


Assuntos
Biomphalaria/parasitologia , Interações Hospedeiro-Parasita , Schistosoma mansoni/fisiologia , Animais , Cercárias/fisiologia , Gônadas/parasitologia , Sistema Nervoso/parasitologia
4.
Environ Sci Pollut Res Int ; 26(23): 23328-23336, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31197669

RESUMO

A wide range of endocrine disruptor compounds are routinely discharged to the ecosystem. Water contaminated with these compounds has a potential effect on the reproductive physiology of aquatic organisms as well as humans. In the present study, we tested the effect of the steroid estrogen, 17ß-estradiol, on Biomphalaria alexandrina, a snail species that is widely distributed in Egypt and that acts as an intermediate host for the human blood fluke, Schistosoma mansoni. The effects of exposure to 0.3 mg/L and 1 mg/L 17ß-estradiol on fecundity (MX) and reproductive rate (R0) of B. alexandrina were recorded. In addition, levels of steroid sex hormones and antioxidants in the hemolymph and ovotestis (OT) of exposed snails were measured. Histopathological changes in the OT of B. alexandrina were also investigated. Exposure to 0.3 mg/L and 1 mg/L 17ß-estradiol caused a significant increase in the number of egg masses per snail after 3 weeks and 1 week of exposure for the two tested concentrations compared with unexposed controls. An increase in the levels of progesterone hormone was recorded in the hemolymph of exposed snails in comparison with unexposed controls. Additionally, levels of the antioxidant enzyme glutathione (GSH) were increased in the hemolymph and OT tissues of snails after 2 and 4 weeks of exposure. Histopathological sections in the OT revealed an increase in the oocyte and a decrease in the sperm densities after 2 weeks and this effect was restored to normal conditions after 4 weeks of exposure to both tested concentrations. The current results indicate that B. alexandrina is sensitive to 17ß-estradiol and can therefore be used as bioindicator and model organism for the assessment of water pollution with endocrine disruptor compounds.


Assuntos
Biomphalaria/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Monitoramento Ambiental/métodos , Estradiol/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Ecossistema , Egito , Biomarcadores Ambientais/efeitos dos fármacos , Fertilidade/efeitos dos fármacos , Gônadas/efeitos dos fármacos , Gônadas/patologia , Hemolinfa/efeitos dos fármacos , Hemolinfa/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA