Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inflammation ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662166

RESUMO

Sinapic acid (SA) is a naturally occurring carboxylic acid found in citrus fruits and cereals. Recent studies have shown that SA has potential anti-seizure properties due to its anti-inflammatory, antioxidant, and anti-apoptotic effects. The present study investigated the neuroprotective role of SA at two different dosages in a pentylenetetrazol (PTZ)-induced acute seizure model. Mice were divided into six groups: normal control, PTZ, SA (20 mg/kg), SA (20 mg/kg) + PTZ, SA (40 mg/kg), and SA (40 mg/kg) + PTZ. SA was orally administered for 21 days, followed by a convulsive dose of intraperitoneal PTZ (50 mg/kg). Seizures were estimated via the Racine scale, and animals were behaviorally tested using the Y-maze. Brain tissues were used to assess the levels of GABA, glutamate, oxidative stress markers, calcium, calcineurin, (Nod)-like receptor protein-3 (NLRP3), interleukin (IL)-1ß, apoptosis-associated speck-like protein (ASC), Bcl-2-associated death protein (Bad) and Bcl-2. Molecular docking of SA using a multistep in silico protocol was also performed. The results showed that SA alleviated oxidative stress, restored the GABA/glutamate balance and calcium/calcineurin signaling, downregulated NLRP3 and apoptosis, and improved recognition and ambulatory activity in PTZ-treated mice. In silico results also revealed that SA strongly interacts with the target proteins NLRP3 and ASC. Overall, the results suggest that SA is a promising antiseizure agent and that both doses of SA are comparable, with 40 mg/kg SA being superior in normalizing glutathione, calcium and IL-1ß, in addition to calcineurin, NLRP3, ASC and Bad.

2.
Biofactors ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38344831

RESUMO

The prevalence of testicular dysfunction is increasing as it is a common diabetes mellites (DM) complication. The objective of this study is to explore the potential protective effect of sulbutiamine against testicular hypofunction associated with streptozotocin (STZ)-induced DM in rats. Sulbutiamine was administered orally (60 mg/kg) to male Wistar rats for 8 weeks starting 72 h after a single injection of STZ (45 mg/kg, i.p.). Blood glucose level (BGL), serum testosterone level, sperm number, and motility were determined. Testicular tissue was examined histopathologically, and the Johnson score was evaluated. Levels of malondialdehyde (MDA), protein kinase C (PKC), nuclear factor erythroid-derived 2-like 2 (Nrf2), and proliferating cell nuclear antigen (PCNA) were measured. Apoptosis was evaluated by immunohistochemical determination of B-cell lymphoma protein 2 (Bcl-2), Bcl-2 associated X-protein (Bax), and caspase-3. Sulbutiamine administration managed to reduce BGL and boost testicular function as manifested by increased testicular weight, testosterone level, sperm number, and motility compared to the STZ group. Additionally, histopathological examination revealed an improved histological picture and Johnson score of testicular tissue after sulbutiamine treatment. Sulbutiamine administration reduced testicular PKC, MDA, and PCNA levels and increased Nrf2 compared to the untreated group. Moreover, sulbutiamine treatment suppressed apoptosis triggered by STZ as evidenced by elevated Bcl-2, decreased Bax and reduced caspase-3. The present work revealed for the first time a promising protective role of sulbutiamine against STZ-induced testicular dysfunction which may add to the clinical utility of sulbutiamine. The underlying mechanisms involve reducing BGL and PKC, activating Nrf2 and inhibiting apoptosis.

3.
Chem Biol Interact ; 381: 110544, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37224990

RESUMO

One of the serious complications of diabetes mellitus is diabetic nephropathy (DN) which may finally lead to renal failure. The current study aimed to explore the effect of sulbutiamine, a synthetic derivative of vitamin B1, in streptozotocin (STZ)-induced DN and related pathways. Experimental DN was successfully induced 8 weeks after a single low dose of STZ (45 mg/kg, I.P.). Four groups of rats were used in this study and divided randomly into: control group, diabetic group, sulbutiamine control (control + sulbutiamine) group, and sulbutiamine-treated (60 mg/kg) (diabetic + sulbutiamine) group. The fasting blood glucose level (BGL), the levels of kidney injury molecule-1 (Kim-1), urea and creatinine in serum, as well as the renal content of malondialdehyde (MDA), protein kinase C (PKC), toll-like receptor-4 (TLR-4) and nuclear factor kappa B (NF-κB) were determined. Additionally, tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and transforming growth factor-ß1 (TGF-ß1) contents were evaluated immunohistochemically. Sulbutiamine treatment decreased fasting BGL and improved the kidney function tests compared to diabetic rats. Moreover, TLR-4, NF-κB, MDA and PKC contents were substantially reduced following sulbutiamine treatment compared to the diabetic group. Sulbutiamine managed to obstruct the production of the pro-inflammatory TNF-α and IL-1ß and suppressed TGF-ß1 level, in addition to attenuating the histopathological changes associated with DN. This study revealed, for the first time, the ability of sulbutiamine to ameliorate STZ-induced diabetic nephropathy in rats. This nephroprotective outcome of sulbutiamine against DN may be attributed to glycemic control in addition to its anti-oxidative, anti-inflammatory and anti-fibrotic effects.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Rim , NF-kappa B/metabolismo , Estresse Oxidativo , Estreptozocina , Tiamina/farmacologia , Tiamina/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
J Adv Res ; 18: 101-112, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30847250

RESUMO

Epilepsy is one of the most well-known neurological conditions worldwide. One-third of adult epileptic patients do not respond to antiepileptic drugs or surgical treatment and therefore suffer from the resistant type of epilepsy. Stem cells have been given substantial consideration in the field of epilepsy therapeutics. The implication of pathologic vascular response in sustained seizures and the eminent role of endothelial progenitor cells (EPCs) in maintaining vascular integrity tempted us to investigate the potential therapeutic effects of EPCs in a pentylenetetrazole (PTZ)-induced rat model of epilepsy. Modulation of autophagy, a process that enables neurons to maintain an equilibrium of synthesis, degradation and subsequent reprocessing of cellular components, has been targeted. Intravenously administered EPCs homed into the hippocampus and amended the deficits in memory and locomotor activity. The cells mitigated neurological damage and the associated histopathological alterations and boosted the expression of brain-derived neurotrophic factor. EPCs corrected the perturbations in neurotransmitter activity and enhanced the expression of the downregulated autophagy proteins light chain protein-3 (LC-3), beclin-1, and autophagy-related gene-7 (ATG-7). Generally, these effects were comparable to those achieved by the reference antiepileptic drug, valproic acid. In conclusion, EPCs may confer therapeutic effects against epilepsy and its associated behavioural and biochemical abnormalities at least in part via the upregulation of autophagy. The study warrants further research in experimental and clinical settings to verify the prospect of using EPCs as a valid therapeutic strategy in patients with epilepsy.

5.
Basic Clin Pharmacol Toxicol ; 118(5): 369-80, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26457982

RESUMO

Chronic hepatitis is recognized as a worldwide health problem that gradually progresses towards cirrhosis and hepatocellular carcinoma. Despite the large number of experiments using animal models for allergic hepatitis, it is still difficult to produce a picture of chronic hepatitis. Therefore, this study was conducted to introduce an animal model approximating to the mechanism of chronicity in human hepatitis. The study also aimed to examine the hepatoprotective effects of curcumin, silybin phytosome(®) and α-R-lipoic acid against thioacetamide (TAA)-induced chronic hepatitis in rat model. TAA was administered intraperitoneally at a dose of 200 mg/kg three times weekly for 4 weeks. At the end of this period, a group of rats was killed to assess the development of chronic hepatitis in comparison with their respective control group. TAA administration was then discontinued, and the remaining animals were subsequently allocated into four groups. Group 1 was left untreated, whereas groups 2-4 were allowed to receive daily oral doses of curcumin, silybin phytosome(®) or α-R-lipoic acid, respectively, for 7 weeks. Increases in hepatic levels of malondialdehyde associated with TAA administration were inhibited in groups receiving supplements. Furthermore, glutathione depletion, collagen deposition, macrophage activation and nuclear factor κappa-B expression as well as tumour necrosis factor-α and interleukin-6 levels were significantly decreased in response to supplements administration. Serological analysis of liver function and liver histopathological examination reinforced the results. The above evidence collectively indicates that the antioxidant and anti-inflammatory activities of curcumin, silybin phytosome(®) and α-R-lipoic acid may confer therapeutic efficacy against chronic hepatitis.


Assuntos
Curcumina/farmacologia , Hepatite Crônica/tratamento farmacológico , Silimarina/análogos & derivados , Ácido Tióctico/farmacologia , Administração Oral , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Curcumina/administração & dosagem , Citocinas/metabolismo , Modelos Animais de Doenças , Hepatite Crônica/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Silibina , Silimarina/administração & dosagem , Silimarina/farmacologia , Tioacetamida/toxicidade , Ácido Tióctico/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA