Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 394: 130209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135224

RESUMO

Urban areas remarkably affect global public health due to their emissions of greenhouse gases and poor air quality. Although urban areas only cover 2% of the Earth's surface, they are responsible for 80% of greenhouse gas emissions. Dense buildings limit vegetation, leading to increased air pollution and disruption of the local and regional carbon cycle. The substitution of urban gray roofs with microalgal green roofs has the potential to improve the carbon cycle by sequestering CO2 from the atmosphere. Microalgae can fix 15-50 times more CO2 than other types of vegetation. Advanced microalgal-based green roof technology may significantly accelerate the reduction of atmospheric CO2 in a more effective way. Microalgal green roofs also enhance air quality, oxygen production, acoustic isolation, sunlight absorption, and biomass production. This endeavor yields the advantage of simultaneously generating protein, lipids, vitamins, and a spectrum of valuable bioactive compounds, including astaxanthin, carotenoids, polysaccharides, and phycocyanin, thus contributing to a green economy. The primary focus of the current work is on analyzing the ecological advantages and CO2 bio-fixation efficiency attained through microalgal cultivation on urban rooftops. This study also briefly examines the idea of green roofs, clarifies the ecological benefits associated with them, discusses the practice of growing microalgae on rooftops, identifies the difficulties involved, and the positive aspects of this novel strategy.


Assuntos
Gases de Efeito Estufa , Microalgas , Fotobiorreatores , Dióxido de Carbono/metabolismo , Microalgas/metabolismo , Microclima , Biomassa
2.
Bioresour Technol ; 386: 129501, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37468013

RESUMO

In this research, the effects of filtered sunlight traveling through translucent-colored polyvinyl chloride (PVC) sheets on the photoconversion efficiency of Arthrospira platensis are investigated. Filtered sunlight improves the phycobilisome's capacity to completely absorb and transport it to intracellular photosystems. Findings indicated that filtered sunlight via orange-colored PVC sheet increased biomass dry weight by 21% (2.80 g/L), while under blue-colored PVC sheet decreased by 32% (1.49 g/L), when compared with translucent-colored (control) PVC sheet (2.19 g/L) after 120 h of culture. The meteorological conditions during the 1st week of cultivation reported higher light flux than the subsequent weeks. Furthermore, sunlight filtered through orange PVC sheet enhanced protein, allophycocyanin, phycocyanin, chlorophyll-a and carotenoids synthesis by 13%, 15%, 13%, 22%, and 27%, respectively. This practical and inexpensive solar radiation filtration system supports large-scale production of tailored bioactive compounds from microalgae with high growth rate.


Assuntos
Spirulina , Luz Solar , Cloreto de Polivinila , Lagoas , Spirulina/metabolismo , Biomassa
3.
Bioresour Technol ; 356: 127272, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35526707

RESUMO

Globally, the release of acrylonitrile-butadienestyrene (ABS) wastewater from numerous industries is a serious concern. Recently, oil-rich filamentous algae Tribonema sp has been grown utilizing toxic but nutrient-rich ABS effluent. Here, Tribonema sp. was cultivated under intervention of different magneto-electric combinatory fields (MCFs) (control, 0.6 V/cm, 1 h/d-1.2 V/cm, 1 h/d-0.6 V/cm, and 1 h/d-1.2 V/cm). Results showed MCF (1 h/d-0.6 V/cm) intervention increased the biomass by 9.7% (2.4 g/L) combined with high removal efficiencies (95% and 99%) of ammonium nitrogen and total phosphorus. The chemical oxygen demand (COD) removal rate increased to 82%, 6% higher than the control. Moreover, MCF of 1 h/d-0.6 V/cm significantly increased lipid and carbohydrate by 7.71% and 4.73% respectively. MCF increased premium fatty acid content such as palmitic acid (C16:0), myristic acid (C14: 0), and hexadecenoic acid (C16:1). MCF intervention also supported a diverse microbial flora, offering a favorable solution for ABS wastewater treatment.


Assuntos
Acrilonitrila , Microalgas , Estramenópilas , Purificação da Água , Biomassa , Butadienos , Eletricidade , Nitrogênio , Estireno , Águas Residuárias/química
4.
Bioresour Technol ; 349: 126829, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35143984

RESUMO

This study attempted to remove acrylonitrile and acetophenone from simulated acrylonitrile butadiene styrene (ABS) based wastewater while recovering nitrogen and phosphorus using the carbohydrate-rich filamentous microalgae Tribonema sp.. Results showed that typical acetophenone and acrylonitrile presented significant inhibitory effect on Tribonema sp. growth and co-metabolism of CO2 improved the tolerance of Tribonema sp. to toxic pollutants. The microalgae biomass increased by 34.47% (3.16 g/L) and 58.17% (3.97 g/L) via supplementing 2% CO2 in the 100 mg/L acrylonitrile and acetophenone groups, respectively. The filamentous microalga was rich in carbohydrates and its productivity was further enhanced by 32.52% and 70.34%, respectively, in 100 mg/L acrylonitrile and acetophenone groups with 2% CO2 supplement. The synergistic CO2 supply strategy effectively enhanced the biomass production of filamentous microalgae, and moreover, improved the treatment efficiency of ABS based wastewater simulated by acetophenone or acrylonitrile addition, while at same time enhanced the recovery of nitrogen and phosphorus nutrients.


Assuntos
Acrilonitrila , Microalgas , Biomassa , Butadienos , Carboidratos , Dióxido de Carbono , Nitrogênio/análise , Nutrientes , Fósforo , Estireno , Águas Residuárias
5.
Bioresour Technol ; 345: 126479, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34864173

RESUMO

In order to optimize light distribution for promoting biomass growth rate of Chlorella pyrenoidosa, concave walls were installed in plate photobioreactors (PBR) to generate rotational flow field of microalgal solution circulated from top inlets to bottom outlets. Flow vortices in four corners of concave-wall PBR resulted in decreased mixing time and increased mass transfer coefficient. The CO2 bio-fixation by C. pyrenoidosa increased by 27% and chlorophyll-a concentration enhanced by 18.5% in concave-wall PBR compared to those in control (flat-wall) PBR. The concave walls diverge light rays to enhance frontal light exposure and supply more light photons into interior regions of PBRs. The promotion in light distribution and vortex flow field with concave walls enhanced light and nutrients utilization by microalgal cells, leading to an increased biomass growth rate by 21%.


Assuntos
Chlorella , Microalgas , Biomassa , Luz , Fotobiorreatores
6.
Bioresour Technol ; 319: 124179, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33038649

RESUMO

Microalgae are significantly affected by the spectra composition with various wavelengths. The development of light harvesting pigments can be controlled with specific wavelength of filtered light received by microalgae. Coverage of open raceway pond using transparent colored polyvinyl chloride sheets (PVCS) to filter light spectra, was assessed for the capacity to enhance biomass growth rate. Results showed that orange PVCS filtered light spectra at wavelengths from 480 to 665 nm, increased biomass dry weight (3.3 g/L) by 61% compared with control condition (white PVCS = 350-750 nm). Light spectra filtered through orange PVCS were more easily absorbed by the light harvesting pigment protein complex (phycobilisome) of Arthrospira platensis cells and subsequently transferred to intracellular photosynthesis reaction centers. Therefore, A. platensis cells cultivated with light spectra filtered through orange PVCS contained 62.7 mg/L chlorophyll-a and 23.5 mg/L carotenoid, which were 40% and 29% higher than control condition (with white PVCS).


Assuntos
Citrus sinensis , Microalgas , Spirulina , Biomassa , Cloreto de Polivinila
7.
Bioresour Technol ; 307: 123253, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32244074

RESUMO

A single helical baffle (SHB), consisting of twisted turns, was developed to convert straight flow into spiral flow in a Chlorella PY-ZU1 open raceway pond (ORWP) bubbled with 15% CO2. Microalgal solution flowing through the SHB alternative helical interspaces generated whirling flow both vertically and horizontally, which decreased mixing and increased mass transfer rates. The optimized SHB had a pitch length to total SHB length ratio of 0.13 and SHB diameter to ORWP single channel width ratio of 0.30, which decreased mixing times and increased mass transfer coefficients by 41.1% and 38.4% respectively. SHB moved Chlorella PY-ZU1 from the ORWP bottom to the top, increasing light exposure for photosynthesis. Cellular electron transfer rates and photochemical efficiency (φPSII) increased by 18%, chlorophyll a content increased by 16% and variable to maximum fluorescence ratio increased by 13%. The microalgal biomass of SHB ORWP was 23% higher than that of conventional ORWP.


Assuntos
Chlorella , Microalgas , Biomassa , Dióxido de Carbono , Clorofila A
8.
Microb Biotechnol ; 13(2): 470-478, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31646765

RESUMO

The weight ratio of Na2 CO3 /NaHCO3 was investigated in order to improve microalgal productivity in large-scale industrial operations by converting NaHCO3 to Na2 CO3 with a growth of Arthrospira platensis cells in 660 m2 raceway ponds. Two microalgal cultivation systems with a NaHCO3 by-product (SPBP) and a CO2 bicarbonation absorber (CBAP) were firstly thoroughly introduced. There was a 13.3% decrease in the initial weight ratio of Na2 CO3 /NaHCO3 resulting in a 25.3% increase in the biomass growth rate with CBAP, compared to that of SPBP. Increased sunlight intensity, solution temperature and pH all resulted in both a higher HCO 3 - absorbance and CO 3 2 - release, thereby increasing the weight ratio of Na2 CO3 /NaHCO3 during the growth of A. platensis. The biomass growth rate was peaked at 39.9 g m-2  day-1 when the weight ratio of Na2 CO3 /NaHCO3 was 3.7. Correspondingly, the cell pigments (chlorophyll a and carotenoid) and trichome size (helix pitch and trichome length) reached to a maximum state of 8.47 mg l-1 , 762 µg l-1 , 57 and 613 µm under the CBAP system.


Assuntos
Microalgas , Spirulina , Biomassa , Dióxido de Carbono , Clorofila A , Lagoas
9.
Bioresour Technol ; 292: 121979, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31445241

RESUMO

In order to evaluate light penetration and its influence on microalgae growth in a raceway pond with alternatively permutated conic baffles (RWP-APCB), 3D numerical simulation of light penetration was performed using computational fluid dynamics in an optimized flow field composed of microalgae cells, CO2 bubbles and culture medium. Results showed that light intensity in the culture medium attenuated faster in accordance with solution depth, with increased microalgae cell concentration, increased bubble volume fraction and decreased CO2 bubble diameter. Light zone fraction (i.e. ratio of light zone length to solution depth) increased with promoted incident irradiation. It was found that around 75% of microalgae cells were distributed in light zone and non-photochemical quenching coefficient of microalgae decreased by 32% in RWP-APCB. This resulted in a 16% increase of the Chlorella pyrenoidosa biomass growth rate, to 0.36 g/L/d.


Assuntos
Chlorella , Microalgas , Biomassa , Dióxido de Carbono , Lagoas
10.
Bioresour Technol ; 286: 121384, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31048263

RESUMO

In this work, self-rotary propellers (SRPs) with clockwise/counterclockwise blades were investigated to create spiral flow fields without external power to strengthen gas-liquid mixing and promote microalgal growth in an open raceway pond. The rotational flow around the propellers and spiral flow between the propellers generated extensive wall shear stress in three dimensions. Four-clockwise blades on the propellers exerted better mixing than three-counterclockwise blades. The bubble generation diameter was reduced by 69% and the mass transfer coefficient increased by 49% when the propeller diameter was increased from 32 to 60 mm. The photochemical efficiency (φPSII) of Arthrospira platensis cells was enhanced by 25%, while the helix pitch and trichome lengths were enlarged by 7-16%. Self-rotary propellers (60 mm diameter) with four-clockwise blades enhanced the growth rate of A. platensis biomass by 35% compared to that in an unmodified raceway pond without propellers.


Assuntos
Microalgas , Spirulina , Biomassa , Lagoas , Tricomas
11.
RSC Adv ; 9(5): 2746-2755, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35520536

RESUMO

In order to solve the problems of the short residence time and low utilization efficiency of carbon dioxide (CO2) gas added directly to a raceway pond, a CO2 bicarbonation absorber (CBA) was proposed to efficiently convert CO2 gas and sodium carbonate (Na2CO3) solution to sodium bicarbonate (NaHCO3), which was dissolved easily in the culture medium and left to promote the microalgal growth rate. The CO2 gas reacted with the Na2CO3 solution (initial concentration = 200 mM L-1 and volume ratio in CBA = 60%) for 90 min at 0.3 MPa to give the optimized molar proportion (92%) of NaHCO3 product in total inorganic carbon and increase the microalgal growth rate by 5.0 times. Quantitative label-free protein analysis showed that the expression levels of the photosystem II (PSII) reaction centre protein (PsbH) and PSII cytochrome (PsbV2) in the photosynthesis pathway increased by 4.8 and 3.4 times, respectively, while that of the RuBisCO enzyme (rbcL) in the carbon fixation pathway increased by 3.5 times in Arthrospira platensis cells cultivated with the NaHCO3 product in the CBA at 0.3 MPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA