RESUMO
Expression of concern for 'Decoration of graphene oxide nanosheets with carboxymethylcellulose hydrogel, silk fibroin and magnetic nanoparticles for biomedical and hyperthermia applications' by Mostafa Ghafori Gorab et al., Nanoscale Adv., 2023, 5, 153-159, https://doi.org/10.1039/D2NA00394E.
RESUMO
Hydrogels based on natural polymers have lightened the path of novel drug delivery systems, wound healing, and tissue engineering fields because they are renewable, non-toxic, biocompatible, and biodegradable. Furthermore, applying modified hydrogels can upgrade their biological activity. Herein, Chitosan (CS) was used to create a hydrogel using terephthaloyl thiourea as a cross-linker. Silk fibroin (SF) and carbon nitride (CN) were added to the hydrogel to enhance its strength and biocompatibility. Finally, CS hydrogel/SF/CN was in situ magnetized using Fe3O4 magnetic nanoparticles (MNPs) and manufactured as a nanobiocomposite for improved hyperthermia. The structural properties of the nanobiocomposite were assessed using several analytical techniques, including VSM, FTIR, TGA, EDX, XRD, and FESEM. The saturation magnetization of this magnetic nanocomposite was 23.94 emu/g. The hemolytic experiment on the nanobiocomposite resulted in ca. 98 % cell survival, with a hemolysis rate of 1.69 %. Anticancer property is confirmed by a 20.0 % reduction in cell viability of BT549 cells at 1.75 mg/mL concentration compared to 0.015 mg/mL. The nanocomposite is non-toxic to the human embryonic kidney cell line (HEK293T), indicating its potential for biomedical applications. Finally, the magnetic nanocomposite's hyperthermia behavior was examined using a specific absorption rate (SAR), achieving the highest value of 47.44 W/g at 200.0 kHz. When subjected to an alternating magnetic field, the nanobiocomposite may perform well in hyperthermia therapy. These results indicate that the magnetic nanobiocomposite has the potential to perform well in hyperthermia therapy when subjected to an alternating magnetic field.
Assuntos
Quitosana , Fibroínas , Hidrogéis , Nanocompostos , Nitrilas , Quitosana/química , Nitrilas/química , Nitrilas/farmacologia , Humanos , Nanocompostos/química , Fibroínas/química , Hidrogéis/química , Sobrevivência Celular/efeitos dos fármacos , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Células HEK293 , Linhagem Celular Tumoral , Materiais Biocompatíveis/química , Hemólise/efeitos dos fármacosRESUMO
Combining a biocompatible hydrogel scaffold with the cell-supportive properties of silk fibroin (SF) and the unique functionalities of ZnFe2O4 nanoparticles creates a promising platform for advanced nanobiomaterials. The research is centered on synthesizing a natural hydrogel using cellulose (Cellul) and sodium alginate (SA) combined with SF and zinc ferrite nanoparticles. A range of analytical and biological assays were conducted to determine the biological and physicochemical properties of the nanobiocomposite. The hemolysis and 2,5-diphenyl-2H-tetrazolium bromide (MTT) assays indicated that the SA-Cellul hydrogel/SF/ZnFe2O4 nanobiocomposite was a biocompatible against human dermal fibroblasts (Hu02) and red blood cells (RBC). In addition, aside from demonstrating outstanding anti-biofilm activity, the nanobiocomposite also promotes the Hu02 cells adhesion, showcasing the synergistic effect of incorporating SF and ZnFe2O4 nanoparticle. These promising results show that this nanobiocomposite has potential applications in various biomedical fields.
Assuntos
Alginatos , Materiais Biocompatíveis , Biofilmes , Adesão Celular , Celulose , Compostos Férricos , Fibroínas , Hidrogéis , Zinco , Alginatos/química , Fibroínas/química , Fibroínas/farmacologia , Humanos , Hidrogéis/química , Adesão Celular/efeitos dos fármacos , Celulose/química , Celulose/farmacologia , Compostos Férricos/química , Compostos Férricos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Biofilmes/efeitos dos fármacos , Zinco/química , Nanopartículas/química , Fibroblastos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Linhagem CelularRESUMO
Blindness in the elderly is often caused by age-related macular degeneration (AMD). The advanced type of AMD known as neovascular AMD (nAMD) has been linked to being the predominant cause of visual impairment in these people. Multiple neovascular structures including choroidal neovascular (CNV) membranes, fluid exudation, hemorrhages, and subretinal fibrosis, are diagnostic of nAMD. These pathological alterations ultimately lead to anatomical and visual loss. It is known that vascular endothelial growth factor (VEGF), a type of proangiogenic factor, mediates the pathological process underlying nAMD. Therefore, various therapies have evolved to directly target the disease. In this review article, an attempt has been made to discuss general explanations about this disease, all common treatment methods based on anti-VEGF drugs, and the use of drug delivery systems in the treatment of AMD. Initially, the pathophysiology, angiogenesis, and different types of AMD were described. Then we described current treatments and future treatment prospects for AMD and outlined the advantages and disadvantages of each. In this context, we first examined the types of therapeutic biomolecules and anti-VEGF drugs that are used in the treatment of AMD. These biomolecules include aptamers, monoclonal antibodies, small interfering RNAs, microRNAs, peptides, fusion proteins, nanobodies, and other therapeutic biomolecules. Finally, we described drug delivery systems based on liposomes, nanomicelles, nanoemulsions, nanoparticles, cyclodextrin, dendrimers, and composite vehicles that are used in AMD therapy.
Assuntos
Inibidores da Angiogênese , Sistemas de Liberação de Medicamentos , Degeneração Macular , Fator A de Crescimento do Endotélio Vascular , Humanos , Sistemas de Liberação de Medicamentos/métodos , Degeneração Macular/tratamento farmacológico , Inibidores da Angiogênese/administração & dosagem , Animais , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Neovascularização de Coroide/tratamento farmacológicoRESUMO
Gellan gum (GG) has attracted considerable attention as a versatile biopolymer with numerous potential biological applications, especially in the fields of tissue engineering, wound healing, and cargo delivery. Due to its distinctive characteristics like biocompatibility, biodegradability, nontoxicity, and gel-forming ability, GG is well-suited for these applications. This review focuses on recent research on GG-based hydrogels and biocomposites and their biomedical applications. It discusses the incorporation of GG into hydrogels for controlled drug release, its role in promoting wound healing processes, and its potential in tissue engineering for various tissues including bone, retina, cartilage, vascular, adipose, and cardiac tissue. It provides an in-depth analysis of the latest findings and advancements in these areas, making it a valuable resource for researchers and professionals in these fields.
Assuntos
Cartilagem , Engenharia Tecidual , Cartilagem/metabolismo , Osso e Ossos , Polissacarídeos Bacterianos/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismoRESUMO
This paper presents a new scaffold made from graphene oxide nanosheets, calix[4]arene supramolecules, silk fibroin proteins, cobalt ferrite nanoparticles, and alginate hydrogel (GO-CX[4]/SF/CoFe2O4/Alg). After preparing the composite, we conducted various analyses to examine its structure. These analyses included FTIR, XRD, SEM, EDS, VSM, DLS, and zeta potential tests. Additionally, we performed tests to evaluate the swelling ratio, rheological properties, and compressive mechanical strength of the material. The biological capability of the composite was tested through biocompatiblity, anticancer, hemolysis, antibacterial anti-biofilm assays. Besides, the rheological properties and swelling behaviour of the composite were studied. The results showed that the scaffold is biocompatible with Hu02 cells and the cell viability percentages of 85.23 %, 82.78 %, and 80.18 % for were acquired for 24, 48, and 72 h, respectively. In contrast, the cell viability percentage of BT549 cancer cells were obtained 65.79 %, 60.45 % and 58.16 % for same period which confirmed notable anticancer activity of the product composite. Moreover, a significant antibacterial growth inhibition against E. coli and S. aureus species highlights its potential as an effective antibacterial agent. Furthermore, the observed minimal hemolytic effect (6.56 %) and strong inhibition of P. aeruginosa biofilm formation with a low OD value (0.24) indicate notable hemocompatibility and antibacterial activity.
Assuntos
Cobalto , Compostos Férricos , Fibroínas , Grafite , Poríferos , Animais , Fibroínas/química , Staphylococcus aureus , Alginatos/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Seda/químicaRESUMO
Granulocyte colony-stimulating factor (GCSF) stimulates the proliferation of neutrophils but it has low serum half-life. Therefore, the present study was done to investigate the effect of XTENylation on biological activity, pharmacokinetics, and pharmacodynamics of GCSF in a neutropenic rat model. XTEN tag was genetically fused to the N-terminal region of GCSF-encoding gene fragment and subcloned into pET28a expression vector. The cytoplasmic expressed recombinant protein was characterized through intrinsic fluorescence spectroscopy (IFS), dynamic light scattering (DLS), and size exclusion chromatography (SEC). In vitro biological activity of the XTEN-GCSF protein was evaluated on NFS60 cell line. Hematopoietic properties and pharmacokinetics were also investigated in a neutropenic rat model. An approximately 140 kDa recombinant protein was detected on SDS-PAGE. Dynamic light scattering and size exclusion chromatography confirmed the increase in hydrodynamic diameter of GCSF molecule after XTENylation. GCSF derivatives showed efficacy in proliferation of NFS60 cell line among which the XTEN-GCSF represented the lowest EC50 value (100.6 pg/ml). Pharmacokinetic studies on neutropenic rats revealed that XTEN polymer could significantly increase protein serum half-life in comparison with the commercially available GCSF molecules. PEGylated and XTENylated GCSF proteins were more effective in stimulation of neutrophils compared to the GCSF molecule alone. XTENylation of GCSF represented promising results in in vitro and in vivo studies. This approach can be a potential alternative to PEGylation strategies for increasing serum half-life of protein.
Assuntos
Fator Estimulador de Colônias de Granulócitos , Polímeros , Animais , Ratos , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/isolamento & purificação , Fator Estimulador de Colônias de Granulócitos/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Neutrófilos , Polímeros/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologiaRESUMO
In this research work, a magnetic nanobiocomposite is designed and presented based on the extraction of flaxseed mucilage hydrogel, silk fibroin (SF), and Fe3O4 magnetic nanoparticles (Fe3O4 MNPs). The physiochemical features of magnetic flaxseed mucilage hydrogel/SF nanobiocomposite are evaluated by FT-IR, EDX, FE-SEM, TEM, XRD, VSM, and TG technical analyses. In addition to chemical characterization, given its natural-based composition, the in-vitro cytotoxicity and hemolysis assays are studied and the results are considerable. Following the use of highest concentration of magnetic flaxseed mucilage hydrogel/SF nanobiocomposite (1.75 mg/mL) and the cell viability percentage of two different cell lines including normal HEK293T cells (95.73%, 96.19%) and breast cancer BT549 cells (87.32%, 86.9%) in 2 and 3 days, it can be inferred that this magnetic nanobiocomposite is biocompatible with HEK293T cells and can inhibit the growth of BT549 cell lines. Besides, observing less than 5% of hemolytic effect can confirm its hemocompatibility. Furthermore, the high specific absorption rate value (107.8 W/g) at 200 kHz is generated by a determined concentration of this nanobiocomposite (1 mg/mL). According to these biological assays, this magnetic responsive cytocompatible composite can be contemplated as a high-potent substrate for further biomedical applications like magnetic hyperthermia treatment and tissue engineering.
Assuntos
Fibroínas , Linho , Hipertermia Induzida , Humanos , Fibroínas/química , Hidrogéis/química , Materiais Biocompatíveis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Células HEK293 , Fenômenos Magnéticos , Seda/químicaRESUMO
A magnetic xanthan hydrogel/silk fibroin nanobiocomposite (XG hydrogel/SF/Fe3O4) was designed, fabricated, and characterized using analyzing methods such as FT-IR, EDX, FE-SEM, XRD, TGA, and VSM to evaluate the exact structure of product nanobiocomposite. The FE-SEM images reveal the presence of spherical shapes exhibiting a narrow size range and homogeneous distribution, measuring between 30 and 35 nm in diameter. The VSM analysis demonstrates the superparamagnetic properties of the XG hydrogel/SF/Fe3O4 nanobiocomposite, exhibiting a magnetic saturation of 54 emu/g at room temperature. The biological response of the nanobiocomposite scaffolds was assessed through cell viability and red blood cell hemolytic assays. MCF10A cells were exposed to a concentration of 1.75 mg/mL of the nanobiocomposite, and after 2 and 3 days, the cell viability was found to be 96.95 % and 97.02 %, respectively. The hemolytic effect was nearly 0 % even at higher concentrations (2 mg/mL). Furthermore, the magnetic nanobiocomposite showed excellent potential for hyperthermia applications, with a maximum specific absorption rate of 7 W/g for 1 mg/mL of the sample under a magnetic field in different frequencies (100, 200, 300, and 400 MHz) and 5 to 20 min time intervals.
Assuntos
Fibroínas , Hipertermia Induzida , Nanocompostos , Hidrogéis/farmacologia , Hidrogéis/química , Fibroínas/farmacologia , Fibroínas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanocompostos/química , Fenômenos MagnéticosRESUMO
In this work, a magnetic nanobiocomposite scaffold based on carboxymethylcellulose (CMC) hydrogel, silk fibroin (SF), and magnetite nanoparticles was fabricated. The structural properties of this new magnetic nanobiocomposite were characterized by various analyses such as FT-IR, XRD, EDX, FE-SEM, TGA and VSM. According to the particle size histogram, most of the particles were between 55 and 77 nm and the value of saturation magnetization of this nanobiocomposite was reported 41.65 emu.g- 1. Hemolysis and MTT tests showed that the designed magnetic nanobiocomposite was compatible with the blood. In addition, the viability percentage of HEK293T normal cells did not change significantly, and the proliferation rate of BT549 cancer cells decreased in its vicinity. EC50 values for HEK293T normal cells after 48 h and 72 h were 3958 and 2566, respectively. Also, these values for BT549 cancer cells after 48 h and 72 h were 0.4545 and 0.9967, respectively. The efficiency of fabricated magnetic nanobiocomposite was appraised in a magnetic fluid hyperthermia manner. The specific absorption rate (SAR) of 69 W/g (for the 1 mg/mL sample at 200 kHz) was measured under the alternating magnetic field (AMF).
Assuntos
Fibroínas , Hipertermia Induzida , Neoplasias , Humanos , Fibroínas/farmacologia , Fibroínas/química , Hidrogéis , Carboximetilcelulose Sódica/farmacologia , Carboximetilcelulose Sódica/química , Espectroscopia de Infravermelho com Transformada de Fourier , Células HEK293 , Fenômenos Magnéticos , Neoplasias/tratamento farmacológicoRESUMO
Herein, a multifunctional nanobiocomposite was designed for biological application, amongst which hyperthermia cancer therapy application was specifically investigated. This nanobiocomposite was fabricated based on chitosan hydrogel (CS), silk fibroin (SF), water-soluble polymer polyvinyl alcohol (PVA) and iron oxide magnetic nanoparticles (Fe3O4 MNPs). CS and SF as natural compounds were used to improve the biocompatibility, biodegradability, adhesion and cell growth properties of the nanobiocomposite that can prepare this nanocomposite for the other biological applications such as wound healing and tissue engineering. Since the mechanical properties are very important in biological applications, PVA polymer was used to increase the mechanical properties of the prepared nanobiocomposite. All components of this nanobiocomposite have good dispersion in water due to the presence of hydrophilic groups such as NH2, OH, and COOH, which is one of the effective factors in increasing the efficiency of hyperthermia cancer therapy. The structural analyzes of the hybrid nanobiocomposite were determined by FT-IR, XRD, EDX, FE-SEM, TGA and VSM. Biological studies such as MTT and hemolysis testing proved that it is hemocompatible and non-toxic for healthy cells. Furthermore, it can cause the death of cancer cells to some extent (20.23%). The ability of the nanobiocomposites in hyperthermia cancer therapy was evaluated. Also, the results showed that it can be introduced as an excellent candidate for hyperthermia cancer therapy.
RESUMO
Recombinant human keratinocyte growth factor (rhKGF) is a highly aggregation-prone therapeutic protein. The present study aimed to reduce aggregation propensity of rhKGF by engineering the aggregation hotspots. Initially, 21 mutants were designed based on the previously-identified aggregation-prone regions (APRs) and then four of them including mutants No. 4 (L91K, I119K), 7 (V13S, L91K), 14 (L91D, I119D), and 21 (A51E) were selected based on molecular dynamics (MD) simulations for further experimental studies. The recombinantly produced rhKGF and mutants were analyzed regarding secondary structure, thermal stability, aggregation propensity, and biological activity. Far-UV CD spectroscopy showed that the mutants have similar secondary structure with rhKGF. A51E mutant showed enhanced stability and decreased monomer loss under heat stress suggesting its reduced aggregation propensity compared to rhKGF. Mutant No. 14 showed higher stability and less aggregation tendency than mutant No. 4 indicating that only mutations decreasing pI of rhKGF are effective in reducing its aggregation tendency. All of the mutants were at least as potent as rhKGF in stimulating proliferation of MCF-7 epithelial cells. Our results identified A51E as an equally potent, more stable, and less aggregation-prone analog of rhKGF which could be a promising alternative drug candidate for the commercially available rhKGF (Palifermin).
Assuntos
Fator 7 de Crescimento de Fibroblastos , Simulação de Dinâmica Molecular , HumanosRESUMO
In the current study, sodium alginate (SA) and tannic acid (TA), in the presence of calcium chloride as a cross-linker, were used to fabricate a nanocomposite scaffold. With the addition of silk fibroin (SF), the strength of the synthesized composite was increased. Fe3O4 magnetic nanoparticles (MNPs) led to the usage of this magnetic nanocomposite in hyperthermia applications. Various properties of this scaffold were investigated by field emission scanning electron microscope (FE-SEM), thermogravimetric analysis (TGA), Fourier-transformed infrared (FT-IR), energy dispersive X-Ray (EDX), Vibrating- sample magnetometer (VSM). A hemolytic assay of this magnetic nanocomposite demonstrated that about 100 % of red blood cells (RBCs) survived at a concentration of 2 mg/ml, proving this scaffold is hemocompatible. Furthermore, an MTT assay was utilized to assess the cytotoxicity of the synthesized magnetic nanocomposite. Finally, the hyperthermia behavior of the fabricated magnetic nanocomposite was evaluated, and the specific absorption rate (SAR) was 73.53 W/g. The proposed nanocomposite is a good candidate for wound dressing applications in future studies.
Assuntos
Fibroínas , Hipertermia Induzida , Nanocompostos , Hidrogéis , Alginatos , Espectroscopia de Infravermelho com Transformada de Fourier , Fenômenos MagnéticosRESUMO
In this study, a novel and green chitosan-metformin/NiCl2/Fe3O4 nanobiocomposite was synthesized and used to purify alkaline phosphatase (ALPs) from hen's egg yolk. For this purpose, after functionalization of the chitosan biopolymer by terephthaloyl chloride-metformin ligand, the coordination with Ni(II) and magnetization process were performed. The structure and properties of the synthesized nanobiocomposite were then evaluated by using analyzes such as FT-IR, EDX, FE-SEM, XRD, TGA and VSM. Purification of ALPs with chitosan-metformin/NiCl2/Fe3O4 nanobiocomposite is a fast, reusable and cost-effective method. By this protocol, 62% purification efficiency was obtained and the synthesized nanobiocomposite was not attached to other proteins in hen's egg yolk. ALPs was obtained approximately in the pure form and the purification process was evaluated using SDS-PAGE. The reusability of nanobiocomposites was evaluated and a slight decrease in adsorption capacity was observed after 4 cycles.
Assuntos
Quitosana , Nanopartículas de Magnetita , Metformina , Fosfatase Alcalina , Alérgenos , Animais , Galinhas , Corantes , Gema de Ovo , Feminino , Íons , Níquel , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
There is a growing demand for biomaterials developing with novel properties for biomedical applications hence, hydrogels with 3D crosslinked polymeric structures obtained from natural polymers have been deeply inspected in this field. Pectin a unique biopolymer found in the cell walls of fruits and vegetables is extensively used in the pharmaceutical, food, and textile industries due to its ability to form a thick gel-like solution. Considering biocompatibility, biodegradability, easy gelling capability, and facile manipulation of pectin-based biomaterials; they have been thoroughly investigated for various potential biomedical applications including drug delivery, wound healing, tissue engineering, creation of implantable devices, and skin-care products.
Assuntos
Materiais Biocompatíveis , Pectinas , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Pectinas/química , Polímeros , Engenharia TecidualRESUMO
In this study, a novel nanobiocomposite was synthesized using graphene oxide, lignin, silk fibroin and ZnO and used in biological fields. To synthesize this structure, after preparing graphene oxide by the Hummer method, lignin, silk fibroin, and ZnO nanoparticles (NPs) were added to it, respectively. Also, ZnO NPs with a particle size of about 18 nm to 33 nm was synthesized via Camellia sinensis extract by green methodology. The synthesized structure was examined as anti-biofilm agent and it was observed that the Graphene oxide-lignin/silk fibroin/ZnO nanobiocomposite has a significant ability to prevent the formation of P. aeruginosa biofilm. In addition, due to the importance of the possibility of using this structure in biological environments, its toxicity and blood compatibility were also evaluated. According to the obtained results from MTT assay, the viability percentages of Hu02 cells treated with Graphene oxide-lignin/silk fibroin/ZnO nanobiocomposite after 24, 48, and 72 h of incubation were 89.96%, 89.32%, and 91.28%. On the other hand, the hemolysis percentage of the synthesized structure after 24 h and 72 h of extraction was 9.5% and 11.76% respectively. As a result, the synthesized structure has a hemolysis percentage below 12% and its toxicity effect on Hu02 cells is below 9%.
Assuntos
Fibroínas , Nanopartículas Metálicas , Óxido de Zinco , Antibacterianos/química , Fibroínas/química , Grafite , Hemólise , Humanos , Lignina , Pseudomonas aeruginosa , Óxido de Zinco/farmacologiaRESUMO
Granulocyte colony stimulating factor (GCSF) can decrease mortality of patients undergo chemotherapy through increasing neutrophil counts. Many strategies have been developed to improve its blood circulating time. Albumin binding domain (ABD) was genetically fused to N-terminal end of GCSF encoding sequence and expressed as cytoplasmic inclusion bodies within Escherichia coli. Biological activity of ABD-GCSF protein was assessed by proliferation assay on NFS-60 cells. Physicochemical properties were analyzed through size exclusion chromatography, circular dichroism, intrinsic fluorescence spectroscopy and dynamic light scattering. Pharmacodynamics and pharmacokinetic properties were also investigated in a neutropenic rat model. CD and IFS spectra revealed that ABD fusion to GCSF did not significantly affect the secondary and tertiary structures of the molecule. DLS and SEC results indicated the absence of aggregation formation. EC50 value of the ABD-GCSF in proliferation of NFS-60 cells was 75.76 pg/ml after 72 h in comparison with control GCSF molecules (Filgrastim: 73.1 pg/ml and PEG-Filgrastim: 44.6 pg/ml). Animal studies of ABD-GCSF represented improved serum half-life (9.3 ± 0.7 h) and consequently reduced renal clearance (16.1 ± 1.4 ml/h.kg) in comparison with Filgrastim (1.7 ± 0.1 h). Enhanced neutrophils count following administration of ABD-GCSF was comparable with Filgrastim and weaker than PEG-Filgrastim treated rats. In vitro and in vivo results suggested the ABD fusion as a potential approach for improving GCSF properties.
Assuntos
Albuminas/farmacologia , Proliferação de Células/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/sangue , Fator Estimulador de Colônias de Granulócitos/farmacologia , Domínios Proteicos , Albuminas/química , Albuminas/farmacocinética , Animais , Linhagem Celular , Fenômenos Químicos , Modelos Animais de Doenças , Escherichia coli , Fator Estimulador de Colônias de Granulócitos/química , Fator Estimulador de Colônias de Granulócitos/farmacocinética , Meia-Vida , Humanos , Corpos de Inclusão , Contagem de Leucócitos , Neutropenia/metabolismo , Neutrófilos/efeitos dos fármacos , Ligação Proteica , RatosRESUMO
In this study, an efficient nanobiocomposite based on graphene oxide (GO), carboxymethylcellulose (CMC) hydrogel, silk fibroin (SF), and Fe3O4 nanoparticles was synthesized. For this purpose and in order to provide a suitable scaffold for the nanobiocomposite, GO was functionalized with a CMC hydrogel via covalent bonding. In the next step, SF was added to the synthesized structure to increase biocompatibility and biodegradability. Fe3O4 was added into the structure by an in situ process and the GO-CMC hydrogel/SF/Fe3O4 nanobiocomposite was synthesized. The synthesized structure was evaluated in terms of toxicity and hemocompatibility and finally, it was used in the hyperthermia technique. This nanocomposite did not destroy healthy HEK293T cells after 48 h and 72 h, while it did annihilate BT549 cancer cells. The GO-CMC hydrogel/SF/Fe3O4 nanobiocomposite has EC50 values of 0.01466 and 0.1415 against HEK293T normal cells and BT549 cancer cells, respectively (after 72 h). The nanocomposite has good potential in hyperthermia applications and at a concentration and a frequency of 1 mg mL-1 and 400 kHz it has a SAR of 67.7 W g-1.
RESUMO
Natural polymers are at the center of materials development for biomedical and biotechnological applications based on their biocompatibility, low-toxicity and biodegradability. In this study, a novel nanobiocomposite based on cross-linked pectin-cellulose hydrogel, silk fibroin, and Mg(OH)2 nanoparticles was designed and synthesized. After extensive physical-chemical characterization, the biological response of pectin-cellulose/silk fibroin/Mg(OH)2 nanobiocomposite scaffolds was evaluated by cell viability, red blood cells hemolytic and anti-biofilm assays. After 3 days and 7 days, the cell viability of this nanobiocomposite scaffold was 65.5% and 60.5% respectively. The hemolytic effect was below 20%. Furthermore, the presence of silk fibroin and Mg(OH)2 nanoparticles allowed to enhance the anti-biofilm activity, inhibiting the P. aeruginosa biofilm formation.
Assuntos
Materiais Biocompatíveis/química , Celulose/química , Fibroínas/química , Hidrogéis/química , Hidróxido de Magnésio/química , Nanopartículas/química , Pectinas/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Nanocompostos/química , Polímeros , Análise EspectralRESUMO
Based on the promising biomedical developments in wound healing strategies, herein, a new nanobiocomposite scaffold was designed and presented by incorporation of carboxymethyl cellulose hydrogels prepared using epichlorohydrin as a cross-linking agent (CMC hydrogel), a natural silk fibroin (SF) protein, and magnesium hydroxide nanoparticles (Mg(OH)2 NPs). Biological evaluation of the CMC hydrogel/SF/Mg(OH)2 nanobiocomposite scaffold was conducted via in vitro cell viability assays and in vivo assays, red blood cell hemolysis, and antibiofilm assays. Considering the cell viability percentage of Hu02 cells (84.5%) in the presence of the prepared nanobiocomposite after 7 days, it was indicated that this new nanoscaffold was biocompatible. The signs of excellent hemocompatibility and the high antibacterial activity were observed due to the low-point hemolytic effect (8.3%) and high-level potential in constraining the P. aeruginosa biofilm formation with a low OD value (0.13). Moreover, in vivo wound healing assay results indicated that the wound healing method was faster in mice treated with the prepared nanobiocomposite scaffold (82.29%) than the control group (75.63%) in 12 days. Apart from the structural characterization of the CMC hydrogel/SF/Mg(OH)2 nanobiocomposite through FTIR, EDX, FESEM, and TG analyses, compressive mechanical tests, contact angle, porosity, and swelling ratio studies indicated that the combination of the CMC hydrogel structure with SF protein and Mg(OH)2 NPs could significantly impact Young's modulus (from 11.34 to 10.14 MPa), tensile strength (from 299.35 to 250.78 MPa), elongation at break (12.52 to 12.84%), hydrophilicity, and water uptake capacity (92.5%).