Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Cell Med ; 8(1): 55-66, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32195205

RESUMO

Conventional treatment for cancer such as surgical resection and chemotherapy can cause damage in cases with advanced cancers. Moreover, the identification of tumor-specific targets has great importance in T-cell therapies. For decades, T cell activity has been stimulated to improve anti-tumor activity. Bispecific antibodies have attracted strong interest from pharmaceutical companies, for their diagnostic and therapeutic use. Blinatumomab is a first-in-class bispecific T engager antibody for the treatment of relapsed or refractory precursor B- cell acute lymphoblastic leukemia. But, it can benefit several cases with CD19+ malignancies in the future. PhiC31 integrase-based vectors could selectively integrate therapeutic transgenes into pseudo-attP sites in CHO genome. In this study, production of Blinatumomab in CHO cells using this type of vectors was investigated. We evaluated the effects of histone deacetylases (HDACs) inhibitors such as sodium butyrate and valproic acid, on specific productivity and cell viability of antibody expressing cells. Although sodium butyrate increased specific productivity about 1.7-fold and valproic acid about 1.4-fold, valproic acid was found more efficient because of its less cytotoxic effect on cell growth. We examined the efficacy of expressed Blinatumomab at various effector to target (E/T) ratios. A dose-response analyses of calcein-acetoxymethyl release assay illustrated that the effective dose of expressed mAb required for antibody mediated cytotoxicity was 100 ng/ml and the expressed mAb was more effective at E/T ratios of 10:1 and 5:1. Results of this study indicated that the expressed blinatumomab can be useful for enhancing the cytotoxicity of CD3+ T-cells against CD19 + target cells in vitro.

2.
Prep Biochem Biotechnol ; 48(10): 961-967, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30461361

RESUMO

The "bispecifics" market improved over the past decade due to the development of many technological platforms including bispecific T cell engagers (BiTEs). The approval of blinatumomab, the most advanced bispecific T-cell engager (BiTE) in clinical trials, can be a significant milestone in the development of bispecific antibodies. Both Chinese hamster ovary (CHO) cells and E. coli strain are considered as the most widely used hosts for the large-scale production of therapeutic monoclonal antibodies. Since both of the economic and qualitative aspects of protein production are important in industry, selection of a suitable protein expression system is very critical. The BsAb gene was cloned into the expression vectors FC550A-1, pcDNA3.1 (+), and PET22b and 6 × His-tagged BsAb then purified on a Ni-NTA chromatography column. Both SDS-PAGE and Western blotting analysis of the purified protein demonstrated that blinatumomab was successfully expressed as a 55 kDa in both expression systems. The antigen-binding properties of blinatumomab were compared in the mammalian system versus Escherichia coli. The results showed that the purified antibody from a mammalian expression system has better binding activity than the one from E. coli host.


Assuntos
Anticorpos Biespecíficos/biossíntese , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/isolamento & purificação , Escherichia coli , Expressão Gênica , Animais , Células CHO , Cricetulus , Escherichia coli/genética , Escherichia coli/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA