Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1352821, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711517

RESUMO

Pancreatic cancer is a significant cause of cancer-related mortality and often presents with limited treatment options. Pancreatic tumors are also notorious for their immunosuppressive microenvironment. Irreversible electroporation (IRE) is a non-thermal tumor ablation modality that employs high-voltage microsecond pulses to transiently permeabilize cell membranes, ultimately inducing cell death. However, the understanding of IRE's impact beyond the initiation of focal cell death in tumor tissue remains limited. In this study, we demonstrate that IRE triggers a unique mix of cell death pathways and orchestrates a shift in the local tumor microenvironment driven, in part, by reducing the myeloid-derived suppressor cell (MDSC) and regulatory T cell populations and increasing cytotoxic T lymphocytes and neutrophils. We further show that IRE drives induce cell cycle arrest at the G0/G1 phase in vitro and promote inflammatory cell death pathways consistent with pyroptosis and programmed necrosis in vivo. IRE-treated mice exhibited a substantial extension in progression-free survival. However, within a span of 14 days, the tumor immune cell populations reverted to their pre-treatment composition, which resulted in an attenuation of the systemic immune response targeting contralateral tumors and ultimately resulting in tumor regrowth. Mechanistically, we show that IRE augments IFN- Î³ signaling, resulting in the up-regulation of the PD-L1 checkpoint in pancreatic cancer cells. Together, these findings shed light on potential mechanisms of tumor regrowth following IRE treatment and offer insights into co-therapeutic targets to improve treatment strategies.


Assuntos
Modelos Animais de Doenças , Eletroporação , Neoplasias Pancreáticas , Microambiente Tumoral , Animais , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/imunologia , Camundongos , Linhagem Celular Tumoral , Células Supressoras Mieloides/imunologia , Camundongos Endogâmicos C57BL , Humanos , Linfócitos T Reguladores/imunologia , Feminino
3.
Ann Biomed Eng ; 52(1): 48-56, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37989902

RESUMO

This study introduces a new method of targeting acidosis (low pH) within the tumor microenvironment (TME) through the use of cathodic electrochemical reactions (CER). Low pH is oncogenic by supporting immunosuppression. Electrochemical reactions create local pH effects when a current passes through an electrolytic substrate such as biological tissue. Electrolysis has been used with electroporation (destabilization of the lipid bilayer via an applied electric potential) to increase cell death areas. However, the regulated increase of pH through only the cathode electrode has been ignored as a possible method to alleviate TME acidosis, which could provide substantial immunotherapeutic benefits. Here, we show through ex vivo modeling that CERs can intentionally elevate pH to an anti-tumor level and that increased alkalinity promotes activation of naïve macrophages. This study shows the potential of CERs to improve acidity within the TME and that it has the potential to be paired with existing electric field-based cancer therapies or as a stand-alone therapy.


Assuntos
Acidose , Neoplasias , Humanos , Neoplasias/terapia , Eletroporação/métodos , Eletricidade , Imunidade , Microambiente Tumoral
4.
Front Oncol ; 13: 1171278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213298

RESUMO

Background: Irreversible electroporation (IRE) has been previously investigated in preclinical trials as a treatment for intracranial malignancies. Here, we investigate next generation high-frequency irreversible electroporation (H-FIRE), as both a monotherapy and a combinatorial therapy, for the treatment of malignant gliomas. Methods: Hydrogel tissue scaffolds and numerical modeling were used to inform in-vivo H-FIRE pulsing parameters for our orthotopic tumor-bearing glioma model. Fischer rats were separated into five treatment cohorts including high-dose H-FIRE (1750V/cm), low-dose H-FIRE (600V/cm), combinatorial high-dose H-FIRE + liposomal doxorubicin, low-dose H-FIRE + liposomal doxorubicin, and standalone liposomal doxorubicin groups. Cohorts were compared against a standalone tumor-bearing sham group which received no therapeutic intervention. To further enhance the translational value of our work, we characterize the local and systemic immune responses to intracranial H-FIRE at the study timepoint. Results: The median survival for each cohort are as follows: 31 days (high-dose H-FIRE), 38 days (low-dose H-FIRE), 37.5 days (high-dose H-FIRE + liposomal doxorubicin), 27 days (low-dose H-FIRE + liposomal doxorubicin), 20 days (liposomal doxorubicin), and 26 days (sham). A statistically greater overall survival fraction was noted in the high-dose H-FIRE + liposomal doxorubicin (50%, p = 0.044), high-dose H-FIRE (28.6%, p = 0.034), and the low-dose H-FIRE (20%, p = 0.0214) compared to the sham control (0%). Compared to sham controls, brain sections of rats treated with H-FIRE demonstrated significant increases in IHC scores for CD3+ T-cells (p = 0.0014), CD79a+ B-cells (p = 0.01), IBA-1+ dendritic cells/microglia (p = 0.04), CD8+ cytotoxic T-cells (p = 0.0004), and CD86+ M1 macrophages (p = 0.01). Conclusions: H-FIRE may be used as both a monotherapy and a combinatorial therapy to improve survival in the treatment of malignant gliomas while also promoting the presence of infiltrative immune cells.

5.
Front Oncol ; 12: 853779, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372046

RESUMO

Advancements in medical sciences and technologies have significantly improved the survival of many cancers; however, pancreatic cancer remains a deadly diagnosis. This malignancy is often diagnosed late in the disease when metastases have already occurred. Additionally, the location of the pancreas near vital organs limits surgical candidacy, the tumor's immunosuppressive environment limits immunotherapy success, and it is highly resistant to radiation and chemotherapy. Hence, clinicians and patients alike need a treatment paradigm that reduces primary tumor burden, activates systemic anti-tumor immunity, and reverses the local immunosuppressive microenvironment to eventually clear distant metastases. Irreversible electroporation (IRE), a novel non-thermal tumor ablation technique, applies high-voltage ultra-short pulses to permeabilize targeted cell membranes and induce cell death. Progression with IRE technology and an array of research studies have shown that beyond tumor debulking, IRE can induce anti-tumor immune responses possibly through tumor neo-antigen release. However, the success of IRE treatment (i.e. full ablation and tumor recurrence) is variable. We believe that IRE treatment induces IFNγ expression, which then modulates immune checkpoint molecules and thus leads to tumor recurrence. This indicates a co-therapeutic use of IRE and immune checkpoint inhibitors as a promising treatment for pancreatic cancer patients. Here, we review the well-defined and speculated pathways involved in the immunostimulatory effects of IRE treatment for pancreatic cancer, as well as the regulatory pathways that may negate these anti-tumor responses. By defining these underlying mechanisms, future studies may identify improvements to systemic immune system engagement following local tumor ablation with IRE and beyond.

6.
Bioelectrochemistry ; 142: 107886, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34303065

RESUMO

Expansion of cytotoxic T lymphocytes (CTLs) is a crucial step in almost all cancer immunotherapeutic methods. Current techniques for expansion of tumor-reactive CTLs present major limitations. This study introduces a novel method to effectively produce and expand tumor-activated CTLs using high-voltage pulsed electric fields. We hypothesize that utilizing high-voltage pulsed electric fields may be an ideal method to activate and expand CTLs due to their non-thermal celldeath mechanism. Tumor cells were subjected to high-frequency irreversible electroporation (HFIRE) with various electric field magnitudes (1250, 2500 V/cm) and pulse widths (1, 5, and 10 µs), or irreversible electroporation (IRE) at 1250 V/cm. The treated tumor cells were subsequently cocultured with CD4+ and CD8+ T cells along with antigen-presenting cells. We show that tumor-activated CTLs can be produced and expanded when exposed to treated tumor cells. Our results suggest that CTLs are more effectively expanded when pulsed with HFIRE conditions that induce significant cell death (longer pulse widths and higher voltages). Activated CD8+ T cells demonstrate cytotoxicity to untreated tumor cells suggesting effector function of the activated CTLs. The activated CTLs produced with our technique could be used for clinical applications with the goal of targeting and eliminating the tumor.


Assuntos
Eletroporação/métodos , Glioblastoma/patologia , Linfócitos T Citotóxicos/citologia , Linhagem Celular Tumoral , Humanos
7.
Bioelectrochemistry ; 131: 107369, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31706114

RESUMO

High-frequency irreversible electroporation (H-FIRE) is an emerging electroporation-based therapy used to ablate cancerous tissue. Treatment consists of delivering short, bipolar pulses (1-10µs) in a series of 80-100 bursts (1 burst/s, 100µs on-time). Reducing pulse duration leads to reduced treatment volumes compared to traditional IRE, therefore larger voltages must be applied to generate ablations comparable in size. We show that adjuvant calcium enhances ablation area in vitro for H-FIRE treatments of several pulse durations (1, 2, 5, 10µs). Furthermore, H-FIRE treatment using 10µs pulses delivered with 1mM CaCl2 results in cell death thresholds (771±129V/cm) comparable to IRE thresholds without calcium (698±103V/cm). Quantifying the reversible electroporation threshold revealed that CaCl2 enhances the permeabilization of cells compared to a NaCl control. Gene expression analysis determined that CaCl2 upregulates expression of eIFB5 and 60S ribosomal subunit genes while downregulating NOX1/4, leading to increased signaling in pathways that may cause necroptosis. The opposite was found for control treatment without CaCl2 suggesting cells experience an increase in pro survival signaling. Our study is the first to identify key genes and signaling pathways responsible for differences in cell response to H-FIRE treatment with and without calcium.


Assuntos
Cloreto de Cálcio/farmacologia , Morte Celular/efeitos dos fármacos , Eletroporação/métodos , Animais , Linhagem Celular Tumoral , Humanos , Hidrogéis , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
8.
Electrophoresis ; 40(18-19): 2592-2600, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31127957

RESUMO

Cancer stem cells (CSCs) are aggressive subpopulations with increased stem-like properties. CSCs are usually resistant to most standard therapies and are responsible for tumor repropagation. Similar to normal stem cells, isolation of CSCs is challenging due to the lack of reliable markers. Antigen-based sorting of CSCs usually requires staining with multiple markers, making the experiments complicated, expensive, and sometimes unreliable. Here, we study the feasibility of using dielectrophoresis (DEP) for isolation of glioblastoma cells with increased stemness. We culture a glioblastoma cell line in the form of neurospheres as an in vitro model for glioblastoma stem cells. We demonstrate that spheroid forming cells have higher expression of stem cell marker, nestin. Next, we show that dielectric properties of neurospheres change as a result of changing culture conditions. Our results indicate that spheroid forming cells need higher voltages to experience the same DEP force magnitude compared to normal monolayer cultures of glioblastoma cell line. This study confirms the possibility of using DEP to isolate glioblastoma stem cells.


Assuntos
Eletroforese/métodos , Glioblastoma/patologia , Técnicas Analíticas Microfluídicas/métodos , Esferoides Celulares , Linhagem Celular Tumoral , Eletroforese/instrumentação , Desenho de Equipamento , Estudos de Viabilidade , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Esferoides Celulares/classificação , Esferoides Celulares/citologia , Células Tumorais Cultivadas
9.
RSC Adv ; 9(69): 40190-40195, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-35542640

RESUMO

In tissue engineering, the use of scaffolds helps establish a synergistic relationship between the scaffolds and the tissues by improving cell-scaffold interaction. This interaction is enhanced when physiologically relevant biophysical cues are replicated in the artificial scaffolds. Here, we present a novel scaffold that mimics the natural anisotropy of the native extracellular matrix of tissues, fabricated by electrospinning a combination of three polymers: polycaprolactone (PCL), polyvinylidene fluoride (PVDF) and polyaniline (PANI). The scaffolds were characterized for their morphology, surface and mechanical properties. Rat cardiomyoblast (H9c2) cells, cultured on the PCL-PANI-PVDF scaffold, demonstrated cell alignment, penetration and proliferation across the entire surface area of the scaffold without any external chemical or physical stimuli. The PCL-PANI-PVDF scaffold, unlike other scaffolds, does not require post-processing or specific temperature conditions of storage, prior to use. These acellular scaffolds fabricated through polymer blending, open new avenues for research on functional acellular scaffolds for tissue engineering, based on synthetic materials.

10.
Bioelectricity ; 1(1): 49-55, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32292890

RESUMO

Background: This study presents a label-free method of separating macrophages and fibroblasts, cell types critically associated with tumors. Materials and Methods: Contactless dielectrophoresis (DEP) devices were used to separate fibroblasts from macrophages by selectively trapping one population. An ImageJ macro was developed to determine the percentage of each population moving or stationary at a given point in time in a video. Results: At 350Vrms, 20 kHz, and 1.25 µL/min, more than 90% of fibroblasts were trapped while less than 20% of macrophages were trapped. Conclusions: Contactless DEP was used to study macrophage and fibroblast separation as a proof-of-concept study for separating cells in the tumor microenvironment. The associated ImageJ macro could be used in other microfluidic cell separation studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA