Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 463(7278): 191-6, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20016485

RESUMO

All cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer. The catalogue provides remarkable insights into the forces that have shaped this cancer genome. The dominant mutational signature reflects DNA damage due to ultraviolet light exposure, a known risk factor for malignant melanoma, whereas the uneven distribution of mutations across the genome, with a lower prevalence in gene footprints, indicates that DNA repair has been preferentially deployed towards transcribed regions. The results illustrate the power of a cancer genome sequence to reveal traces of the DNA damage, repair, mutation and selection processes that were operative years before the cancer became symptomatic.


Assuntos
Genes Neoplásicos/genética , Genoma Humano/genética , Mutação/genética , Neoplasias/genética , Adulto , Linhagem Celular Tumoral , Dano ao DNA/genética , Análise Mutacional de DNA , Reparo do DNA/genética , Dosagem de Genes/genética , Humanos , Perda de Heterozigosidade/genética , Masculino , Melanoma/etiologia , Melanoma/genética , MicroRNAs/genética , Mutagênese Insercional/genética , Neoplasias/etiologia , Polimorfismo de Nucleotídeo Único/genética , Medicina de Precisão , Deleção de Sequência/genética , Raios Ultravioleta
2.
Am Nat ; 165(4): 420-8, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15791534

RESUMO

We monitored the phenotypic and genotypic changes that occur when two behavioral races come into contact in laboratory populations. Drosophila melanogaster from Zimbabwe and nearby regions (Z type) show strong but asymmetric sexual isolation from their cosmopolitan counterparts (M type). Crosses of Z females and M males do not take place readily when other choices are available. At least 15 loci are known to control Z-type mating preferences and performance. By thoroughly mixing the genomes of the two types in laboratory populations, we artificially created maximum secondary contact. Despite the strength of sexual selection favoring Z-type male characters, Z-type behavior is eliminated or greatly diminished in all 12 hybrid populations after only 60 generations. This trend is consistent with the spread of the M-type behavior throughout the world as well as a detailed analysis of fitness components. Surprisingly, in contrast with the phenotypic convergence toward the M-type, genotypic samples broadly covering the genomic regions of mapped behavioral loci show no such trend. The genome appears to be "fine grained," with adjacent loci having different evolutionary dynamics and genealogical histories.


Assuntos
Drosophila melanogaster/fisiologia , Genótipo , Fenótipo , Comportamento Sexual Animal , Alelos , Animais , Evolução Biológica , Simulação por Computador , Cruzamentos Genéticos , Drosophila melanogaster/genética , Feminino , Marcadores Genéticos , Genoma de Inseto , Hibridização Genética , Masculino
3.
Am Nat ; 165(4): 429-38, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15791535

RESUMO

Drosophila melanogaster is known to have two races in the incipient stages of speciation that exhibit strong asymmetric premating isolation: Zimbabwe (Z) and cosmopolitan (M). In a study examining the phenotypic and genotypic evolution after secondary contact, we found that despite strong sexual selection favoring the Z-type behavior, it is the M-type behavior that comes to dominate hybrid populations. This article examines the fitness costs associated with the Z-type behavior. We have discovered that these costs are great enough to explain the failure of the Z-type behavior to prosper. Here we report that Z-type females produce approximately half the number of offspring that M-type females produce. Furthermore, crosses between populations have revealed that Z-type females mated to M-type males have approximately 20% fewer offspring than the reciprocal crosses because of an inability of M-type sperm to successfully fertilize Z-type eggs. Hybrid crosses also exhibit much-reduced numbers of viable offspring in addition to reduced hybrid male fertility. These fitness effects suggest that multiple mechanisms of postmating isolation have evolved concurrently with the divergence in behavior.


Assuntos
Drosophila melanogaster/fisiologia , Hibridização Genética , Comportamento Sexual Animal , Animais , Cruzamentos Genéticos , Drosophila melanogaster/classificação , Drosophila melanogaster/genética , Feminino , Fertilidade , Especiação Genética , Genótipo , Masculino , Fenótipo , Zimbábue
4.
Proc Natl Acad Sci U S A ; 99(22): 14286-91, 2002 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-12386342

RESUMO

Senescence is a nearly universal feature of multicellular organisms, and understanding why it occurs is a long-standing problem in biology. The two leading theories posit that aging is due to (i) pleiotropic genes with beneficial early-life effects but deleterious late-life effects ("antagonistic pleiotropy") or (ii) mutations with purely deleterious late-life effects ("mutation accumulation"). Previous attempts to distinguish these theories have been inconclusive because of a lack of unambiguous, contrasting predictions. We conducted experiments with Drosophila based on recent population-genetic models that yield contrasting predictions. Genetic variation and inbreeding effects increased dramatically with age, as predicted by the mutation theory. This increase occurs because genes with deleterious effects with a late age of onset are unopposed by natural selection. Our findings provide the strongest support yet for the mutation theory.


Assuntos
Envelhecimento/genética , Drosophila melanogaster/genética , Evolução Molecular , Envelhecimento/fisiologia , Animais , Drosophila melanogaster/fisiologia , Feminino , Endogamia , Masculino , Reprodução/fisiologia
5.
Evolution ; 51(5): 1536-1551, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28568633

RESUMO

Developmental time is a trait of great relevance to fitness in all organisms. In holometabolous species that occupy ephemeral habitat, like Drosophila melanogaster, the impact of developmental time upon fitness is further exaggerated. We explored the trade-offs surrounding developmental time by selecting 10 independent populations from two distantly related selection treatments (CB1-5 and CO1-5 ) for faster development. After 125 generations, the resulting accelerated populations (ACB1-5 and ACO1-5 ) displayed net selection responses for development time of -33.4 hours (or 15%) for ACB and -38.6 hours (or 17%) for ACO. Since most of the change in egg-to-adult developmental time was accounted for by changes in larval duration, the "accelerated" larvae were estimated to develop 25-30% faster than their control/ancestor populations. The responses of ACB and ACO lines were remarkably parallel, despite being founded from populations evolved independently for more than 300 generations. On average, these "A" populations developed from egg to adult in less than eight days and produced fertile eggs less than 24 hours after emerging. Accelerated populations showed no change in larval feeding rate, but a reduction in pupation height, the latter being a trait relating to larval energetic expenditure in wandering prior to pupation. This experiment demonstrates the existence of a negative evolutionary correlation between preadult developmental time and viability, as accelerated populations experienced a severe cost in preadult survivorship. In the final assay generation, viability of accelerated treatments had declined by more than 10%, on average. A diallel cross demonstrated that the loss of viability in the ACO lines was not due to inbreeding depression. These results suggest the existence of a rapid development syndrome, in which the fitness benefits of fast development are balanced by fitness costs resulting from reduced preadult survivorship, marginal larval storage of metabolites, and reduced adult size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA