Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(10): e0269464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36206212

RESUMO

In a viral epidemic, the emergence of a novel strain with increased transmissibility (larger value of basic reproduction number R0) sparks the fear that the increase in transmissibility is likely to lead to an increase in disease severity. It is required to investigate if a new, more contagious strain will be necessarily dominant in the population and resulting in more disease severity. In this paper, the impact of the asymptomatic transmission and the emergence time of a more transmissible variant of a multi-strain viral disease on the disease prevalence, disease severity, and the dominant variant in an epidemic was investigated by a proposed 2-strain epidemic model. The simulation results showed that considering only R0, is insufficient to predict the outcome of a new, more contagious strain in the population. A more transmissible strain with a high fraction of asymptomatic cases can substantially reduce the mortality rate. If the emergence time of the new strain is closer to the start of the epidemic, the new, more contagious variant has more chance to win the viral competition and be the dominant strain; otherwise, despite being more contagious, it cannot dominate previous strains. In conclusion, three factors of R0, the fraction of asymptomatic transmission, and the emergence time of the new strain are required to correctly determine the prevalence, disease severity, and the winner of the viral competition.


Assuntos
Epidemias , Influenza Humana , Viroses , Número Básico de Reprodução , Humanos , Influenza Humana/epidemiologia , Índice de Gravidade de Doença , Viroses/epidemiologia
2.
Front Med (Lausanne) ; 8: 661277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095171

RESUMO

After lifting the COVID-19 lockdown restrictions and opening businesses, screening is essential to prevent the spread of the virus. Group testing could be a promising candidate for screening to save time and resources. However, due to the high false-negative rate (FNR) of the RT-PCR diagnostic test, we should be cautious about using group testing because a group's false-negative result identifies all the individuals in a group as uninfected. Repeating the test is the best solution to reduce the FNR, and repeats should be integrated with the group-testing method to increase the sensitivity of the test. The simplest way is to replicate the test twice for each group (the 2Rgt method). In this paper, we present a new method for group testing (the groupMix method), which integrates two repeats in the test. Then we introduce the 2-stage sequential version of both the groupMix and the 2Rgt methods. We compare these methods analytically regarding the sensitivity and the average number of tests. The tradeoff between the sensitivity and the average number of tests should be considered when choosing the best method for the screening strategy. We applied the groupMix method to screening 263 people and identified 2 infected individuals by performing 98 tests. This method achieved a 63% saving in the number of tests compared to individual testing. Our experimental results show that in COVID-19 screening, the viral load can be low, and the group size should not be more than 6; otherwise, the FNR increases significantly. A web interface of the groupMix method is publicly available for laboratories to implement this method.

3.
BMC Bioinformatics ; 21(1): 318, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32690031

RESUMO

BACKGROUND: Gene Regulatory Networks (GRNs) have been previously studied by using Boolean/multi-state logics. While the gene expression values are usually scaled into the range [0, 1], these GRN inference methods apply a threshold to discretize the data, resulting in missing information. Most of studies apply fuzzy logics to infer the logical gene-gene interactions from continuous data. However, all these approaches require an a priori known network structure. RESULTS: Here, by introducing a new probabilistic logic for continuous data, we propose a novel logic-based approach (called the LogicNet) for the simultaneous reconstruction of the GRN structure and identification of the logics among the regulatory genes, from the continuous gene expression data. In contrast to the previous approaches, the LogicNet does not require an a priori known network structure to infer the logics. The proposed probabilistic logic is superior to the existing fuzzy logics and is more relevant to the biological contexts than the fuzzy logics. The performance of the LogicNet is superior to that of several Mutual Information-based and regression-based tools for reconstructing GRNs. CONCLUSIONS: The LogicNet reconstructs GRNs and logic functions without requiring prior knowledge of the network structure. Moreover, in another application, the LogicNet can be applied for logic function detection from the known regulatory genes-target interactions. We also conclude that computational modeling of the logical interactions among the regulatory genes significantly improves the GRN reconstruction accuracy.


Assuntos
Algoritmos , Biologia Computacional/métodos , Escherichia coli/genética , Lógica Fuzzy , Redes Reguladoras de Genes , Genes Reguladores , Modelos Genéticos , Simulação por Computador , Escherichia coli/metabolismo , Perfilação da Expressão Gênica
4.
PLoS One ; 13(11): e0206976, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30458000

RESUMO

Most studies of gene regulatory network (GRN) inference have focused extensively on identifying the interaction map of the GRNs. However, in order to predict the cellular behavior, modeling the GRN in terms of logic circuits, i.e., Boolean networks, is necessary. The perturbation techniques, e.g., knock-down and over-expression, should be utilized for identifying the underlying logic behind the interactions. However, we will show that by using only transcriptomic data obtained by single-perturbation experiments, we cannot observe all regulatory interactions, and this invisibility causes ambiguity in our model. Consequently, we need to employ the data of multiple omics layers (genome, transcriptome, and proteome) as well as multiple perturbation experiments to reduce or eliminate ambiguity in our modeling. In this paper, we introduce a multi-step perturbation experiment to deal with ambiguity. Moreover, we perform a thorough analysis to investigate which types of perturbations and omics layers play the most important role in the unambiguous modeling of the GRNs and how much ambiguity will be eliminated by considering more perturbations and more omics layers. Our analysis shows that performing both knock-down and over-expression is necessary in order to achieve the least ambiguous model. Moreover, the more steps of the perturbation are taken, the more ambiguity is eliminated. In addition, we can even achieve an unambiguous model of the GRN by using multi-step perturbation and integrating transcriptomic, protein-protein interaction, and cis-element data. Finally, we demonstrate the effect of utilizing different types of perturbation experiment and integrating multi-omics data on identifying the logic behind the regulatory interactions in a synthetic GRN. In conclusion, relying on the results of only knock-down experiments and not including as many omics layers as possible in the GRN inference, makes the results ambiguous, unreliable, and less accurate.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Algoritmos , Sítios de Ligação , Técnicas de Inativação de Genes , Genoma , Genômica/métodos , Ligação Proteica , Proteoma , Fatores de Transcrição/metabolismo , Transcriptoma
5.
Nat Biotechnol ; 34(5): 539-46, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27088724

RESUMO

Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of ß-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes.


Assuntos
Biomarcadores Tumorais/genética , Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla/métodos , Proteínas de Neoplasias/genética , Neoplasias/genética , Polimorfismo de Nucleotídeo Único/genética , Resistencia a Medicamentos Antineoplásicos/genética , Genes Neoplásicos/genética , Predisposição Genética para Doença/genética , Genoma Humano/genética , Humanos , Mutação/genética , Neoplasias/diagnóstico , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA