Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2401410, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39205540

RESUMO

Glucose-responsive glucagon (GRG) therapeutics are a promising technology for reducing the risk of severe hypoglycemia as a complication of diabetes mellitus. Herein, the performance of candidate GRGs in the literature by modeling the kinetics of activation and connecting them as input into physiological glucoregulatory models is evaluated and projected the two distinct GRG designs, experimental results reported in Wu et al. (GRG-I) and Webber et al. (GRG-II) is considered. Both are evaluated using a multi-compartmental glucoregulatory model (IMPACT) and used to compare in-vivo experimental data of therapeutic performance in rats and mice. For GRG-I and GRG-II, the total integrated glucose material balances are overestimated by 41.5% ± 14% and underestimated by 24.8% ± 16% compared to in-vivo time-course data, respectively. These large differences to the relatively simple computational descriptions of glucagon dynamics in the model, which underscores the urgent need for improved glucagon models is attributed. Additionally, therapeutic insulin and glucagon infusion pumps are modeled for type 1 diabetes mellitus (T1DM) human subjects to extend the results to additional datasets. These observations suggest that both the representative physiological and non-physiological models considered in this work require additional refinement to successfully describe clinical data that involve simultaneous, coupled insulin, glucose, and glucagon dynamics.

2.
J Phys Chem A ; 128(28): 5578-5585, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38981061

RESUMO

A combination of experimental measurements and molecular dynamics (MD) simulations was used to investigate how the surfaces of single-wall carbon nanotubes (SWCNTs) are covered by adsorbed ssDNA oligos with different base compositions and lengths. By analyzing the UV absorption spectra of ssDNA-coated SWCNTs before and after coating displacement by a transparent surfactant, the mass ratios of adsorbed ssDNA to SWCNTs were determined for poly-T, poly-C, GT-containing, and AT-containing ssDNA oligos. Based on the measured mass ratios, it is estimated that an average of 20, 22, 26, or 32 carbon atoms are covered by one adsorbed thymine, cytosine, adenine, or guanine nucleotide, respectively. In addition, the UV spectra revealed electronic interactions of varying strengths between the nucleobase aromatic rings and the nanotube π-systems. Short poly-T DNA oligos show stronger π-π stacking interactions with SWCNT surfaces than do short poly-C DNA oligos, whereas both long poly-C and poly-T DNA oligos show strong interactions. These experiments were complemented by MD computations on simulated systems that were constrained to match the measured ssDNA/SWCNT mass ratios. The surface coverages computed from the MD results varied with oligo composition in a pattern that correlates higher measured yields of nanotube fluorescence with greater surface coverage.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , DNA de Cadeia Simples/química , Propriedades de Superfície , Modelos Moleculares , Conformação Molecular , Espectrofotometria , Simulação por Computador
3.
Nano Lett ; 22(20): 8203-8209, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36201880

RESUMO

Aqueous suspensions of single-wall carbon nanotubes (SWCNTs) coated by ssDNA are analyzed using UV absorption and total carbon measurements. The results give absolute average concentrations of both components in samples without free ssDNA. From those values, the average mid-UV SWCNT absorptivity is deduced for three different batches of relatively small diameter nanotubes: two HiPco and one CoMoCAT. The absorptivity values enable the use of simple spectrophotometry to measure absolute concentrations of similar SWCNT samples in aqueous SDS. The results also quantify the mass ratio of ssDNA to SWCNT, defining the average number of nanotube carbon atoms suspended by one ssDNA strand of T15GT15 or T30G. Comparing this experimental parameter with results from replica exchange molecular dynamics simulations of one ssDNA strand freely adsorbed on a (6,5) segment shows close agreement between the computed number of SWCNT atoms covered per strand and the measured number of SWCNT atoms suspended per strand.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , DNA de Cadeia Simples , Simulação de Dinâmica Molecular , Análise Espectral , Água/química
4.
J Phys Chem Lett ; 13(9): 2231-2236, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35238575

RESUMO

Understanding the conformations of physisorbed single-stranded DNA (ssDNA) oligos on single-wall carbon nanotube (SWCNT) surfaces is important for advancing basic nanoscience and for developing applications in biomedicine and quantum information processing. Here we report evidence that the ssDNA strands are partly desorbed from the nanotube surface under common conditions. SWCNT suspensions were prepared in eight ssDNA oligos, each containing 1 guanine and 30 thymine bases but differing in the position of the guanine within the strand. Singlet oxygen exposure then covalently functionalized the guanine to the SWCNT surface, red-shifting the nanotube fluorescence by an amount reflecting the guanine spatial density at the surface. Spectral shifts were greatest for central guanine positions and smallest for end positions. In conjunction with steered molecular dynamics simulations, the results suggest that steric interference between neighboring ssDNA strands on an individual nanotube causes significant dislocation or desorption of the strand ends while central regions remain better wrapped around the nanotube. This effect decreases with decreasing concentrations of free ssDNA.


Assuntos
DNA de Cadeia Simples , Nanotubos de Carbono , Guanina , Simulação de Dinâmica Molecular , Nanotubos de Carbono/química
5.
Biomacromolecules ; 22(5): 2137-2147, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33881314

RESUMO

There is a noted lack of understood, controllable interactions for directing the organization of collagen triple helices. While the field has had success using charge-pair interactions and cation-π interactions in helix design, these alone are not adequate for achieving the degree of specificity desirable for these supramolecular structures. Furthermore, because of the reliance on electrostatic interactions, designed heterotrimeric systems have been heavily charged, a property undesirable in some applications. Amide-π interactions are a comparatively understudied class of charge-free interactions, which could potentially be harnessed for triple-helix design. Herein, we propose, validate, and utilize pairwise amino acid amide-π interactions in collagen triple-helix design. Glutamine-phenylalanine pairs, when arranged in an axial geometry, are found to exhibit a moderately stabilizing effect, while in the lateral geometry, this pair is destabilizing. Together this allows glutamine-phenylalanine pairs to effectively set the register of triple helices. In contrast, interactions between asparagine and phenylalanine appear to have little effect on triple-helical stability. After deconvoluting the contributions of these amino acids to triple-helix stability, we demonstrate these new glutamine-phenylalanine interactions in the successful design of a heterotrimeric triple helix. The results of all of these analyses are used to update our collagen triple-helix thermal stability prediction algorithm, Scoring function for Collagen Emulating Peptides' Temperature of Transition (SCEPTTr).


Assuntos
Amidas , Colágeno , Sequência de Aminoácidos , Modelos Moleculares , Estrutura Secundária de Proteína
6.
Langmuir ; 36(40): 12061-12067, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33006895

RESUMO

Polymer flooding is one of the widely used enhanced oil recovery (EOR) methods. However, tuning polymer properties to achieve improved performance in porous mineral rocks of diverse oil reservoirs remains one of the challenges of EOR processes. Here, we use molecular dynamics (MD) simulations to examine decane/water mixtures with surfactant additives in calcite and kaolinite mineral nanopores and characterize surfactant properties associated with increased fluid mobility and improved wettability in planar and constricted nanopore geometries. Cetyltrimethylammonium chloride (CTAC) and sodium dodecyl sulfate (SDS) surfactants are found to modulate the contact angles of decane droplets and reduce the decane density on mineral surfaces. CTAC can enhance and unblock the flow of decane droplets through narrowing nanopores with constricted geometries while aiding in decane droplet shape deformation, whereas SDS leads to decane droplets stalling in front of constrictions in nanopores. We hypothesize that the inability of the cationic CTAC headgroup to form hydrogen bonds is one of the key factors leading to enhanced CTAC-coated decane flow through constricted nanopores. The obtained molecular view of equilibrium and dynamic properties of complex fluids typical of oil reservoirs can provide a basis for the future design of new molecules for EOR processes.

7.
ACS Nano ; 14(9): 12148-12158, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32845604

RESUMO

Many properties and applications of single-wall carbon nanotubes (SWCNTs) depend strongly on the coatings that allow their suspension in aqueous media. We report that SWCNT fluorescence is quenched by reversible physisorption of dye molecules such as methylene blue, and that measurements of that quenching can be used to infer structure-specific exposures of the nanotube surface to the surrounding solution. SWCNTs suspended in single-stranded DNA oligomers show quenching dependent on the combination of nanotube structure and ssDNA base sequence. Several sequences are found to give notably high or low surface coverages for specific SWCNT species. These effects seem correlated with the selective recognitions used for DNA-based structural sorting of nanotubes. One notable example is that dye quenching of fluorescence from SWCNTs coated with the (ATT)4 base sequence is far stronger for one (7,5) enantiomer than for the other, showing that coating coverage is associated with the coating affinity difference reported previously for this system. Equilibrium modeling of quenching data has been used to extract parameters for comparative complexation constants and accessible surface areas. Further insights are obtained from molecular dynamics simulations, which give estimated contact areas between ssDNA and SWCNTs that correlate with experimentally inferred surface exposures and account for the enantiomeric discrimination of (ATT)4.


Assuntos
Nanotubos de Carbono , Sequência de Bases , DNA , DNA de Cadeia Simples , Simulação de Dinâmica Molecular
8.
Nano Lett ; 18(11): 6995-7003, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30350638

RESUMO

Noncovalent interactions between single-stranded DNA (ssDNA) oligonucleotides and single wall carbon nanotubes (SWNTs) have provided a unique class of tunable chemistries for a variety of applications. However, mechanistic insight into both the photophysical and intermolecular phenomena underlying their utility is lacking, which results in obligate heuristic approaches for producing ssDNA-SWNT based technologies. In this work, we present an ultrasensitive "turn-on" nanosensor for neuromodulators dopamine and norepinephrine with strong relative change in fluorescence intensity (Δ F/ F0) of up to 3500%, a signal appropriate for in vivo neuroimaging, and uncover the photophysical principles and intermolecular interactions that govern the molecular recognition and fluorescence modulation of this nanosensor synthesized from the spontaneous self-assembly of (GT)6 ssDNA rings on SWNTs. The fluorescence modulation of the ssDNA-SWNT conjugate is shown to exhibit remarkable sensitivity to the ssDNA sequence chemistry, length, and surface density, providing a set of parameters with which to tune nanosensor dynamic range, analyte selectivity and strength of fluorescence turn-on. We employ classical and quantum mechanical molecular dynamics simulations to rationalize our experimental findings. Calculations show that (GT)6 ssDNA form ordered rings around (9,4) SWNTs, inducing periodic surface potentials that modulate exciton recombination lifetimes. Further evidence is presented to elucidate how dopamine analyte binding modulates SWNT fluorescence. We discuss the implications of our findings for SWNT-based molecular imaging applications.


Assuntos
Técnicas Biossensoriais/métodos , DNA de Cadeia Simples/química , Dopamina/análise , Fluorescência , Nanotubos de Carbono/química , Neurotransmissores/análise , Norepinefrina/análise , Oligonucleotídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA