Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Regen Med ; 18(5): 413-423, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37125510

RESUMO

Among the greatest general challenges in bioengineering is to mimic human physiology. Advanced efforts in tissue engineering have led to sophisticated 'brain-on-chip' (BoC) microfluidic devices that can mimic structural and functional aspects of brain tissue. BoC may be used to understand the biochemical pathways of neurolgical pathologies and assess promising therapeutic agents for facilitating regenerative medicine. We evaluated the potential of microfluidic BoC devices in various neurological pathologies, such as Alzheimer's, glioblastoma, traumatic brain injury, stroke and epilepsy. We also discuss the principles, limitations and future considerations of BoC technology. Results suggest that BoC models can help understand complex neurological pathologies and augment drug testing efforts for regenerative applications. However, implementing organ-on-chip technology to clinical practice has some practical limitations that warrant greater attention to improve large-scale applicability. Nevertheless, they remain to be versatile and powerful tools that can broaden our understanding of pathophysiological and therapeutic uncertainties to neurological diseases.


In this paper, the authors describe the role of microfluidic 'brain-on-chip' systems as a tool to model and study the human brain. While animal studies have provided significant insights, they lack the complexity of human brain tissue in order to verify the effects of drugs on patients, study complex physiological pathways or personalize regenerative therapies. This makes studying diseases of complex human organs challenging. Microfluidics is a field of study that can address these challenges by developing sophisticated and miniaturized devices that can chamber human tissue. These devices could allow scientists to better study diseases on a model that is accurate and controllable, allowing researchers to better understand complex diseases, assess drug efficacy to specific areas of the brain and potentially accelerate the development of new therapies. Herein, we characterize the principles, development and challenges of microfluidics and the role they have served in different neurological diseases.


Assuntos
Microfluídica , Engenharia Tecidual , Humanos , Microfluídica/métodos , Engenharia Tecidual/métodos , Dispositivos Lab-On-A-Chip , Medicina Regenerativa , Encéfalo
2.
Neurosurg Rev ; 46(1): 57, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786867

RESUMO

Central neurocytoma is the most common primary intraventricular tumor in adults being classified by the World Health Organization (WHO) as a benign grade II tumor with a good prognosis. Given the recent advances with regard to this tumor, a bibliometric analysis was due to study the future direction of research for neurocytomas. A comprehensive Elsevier's Scopus database search was performed to capture all published and indexed studies to date relevant to neurocytoma. A discrete set of validated bibliometric parameters were extracted and analyzed on R v4.1.3. A total of 1002 documents were included in our analysis covering a period between 1910 and 2021 (111 years). Around 98.5% of the documents were multi-author publications with a collaboration index (CI) of 4.21. Acta Neuropathologica, The American Journal of Surgical Pathology, and Cancer were the journals to include the highest number of top ten cited articles (2 out of 10 most cited articles, 20%). Switzerland (4 out of 10, 40%) accounted for the country to have the highest number of top 10 most cited articles with the USA (5588 out of 16,395 citations, 34.1%) having the greatest number of citations. Lastly, our analysis reported an annual growth rate of 6.9% for the number of papers produced by year. This is the first bibliometric analysis to study the top 10 most cited articles with regard to neurocytomas. A shift from histopathologic and clinical symptoms towards the treatment and management of the tumor was observed in our analysis.


Assuntos
Neurocitoma , Humanos , Estados Unidos , Neurocitoma/cirurgia , Bibliometria , Publicações , Suíça , Bases de Dados Factuais
3.
Clin Transl Oncol ; 25(4): 866-872, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36427121

RESUMO

Meningiomas is a tumor of the meninges and is among the most common intracranial neoplasms in adults, accounting for over a third of all primary brain tumors in the United States. Meningiomas can be associated with peritumoral brain edema (PTBE) which if not managed appropriately can lead to poor clinical outcomes. In this review, we summarize the relevant pathophysiology, predictors, and principles for treatment of PTBE. The results of various case-reports and case-series have found that meningioma-associated PTBE have patterns in age, tumor size, and hormone receptor positivity. Our study describes how increased age, increased tumor size, tumor location in the middle fossa, and positive expression of hormone receptors, VEGF, and MMP-9 can all be predictors for worse clinical outcomes. We also characterize treatment options for PTBE such as glucocorticoids and VEGF inhibitors along with the ongoing clinical trials attempting to alleviate PTBE in meningioma cases. The trends summarized in this review can be used to better predict the behavior of meningioma-associated PTBE and establish prognosis models to identify at risk patients.


Assuntos
Edema Encefálico , Neoplasias Meníngeas , Meningioma , Adulto , Humanos , Meningioma/complicações , Meningioma/terapia , Meningioma/metabolismo , Neoplasias Meníngeas/complicações , Neoplasias Meníngeas/terapia , Neoplasias Meníngeas/metabolismo , Edema Encefálico/etiologia , Edema Encefálico/terapia , Edema , Hormônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA