Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(3): 1059-1072, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38559723

RESUMO

Opioids collectively cause over 80,000 deaths in the United States annually. The ability to rapidly identify these compounds in seized drug samples on-site will be essential for curtailing trafficking and distribution. Chemical reagent-based tests are fast and simple but also notorious for giving false results due to poor specificity, whereas portable Raman spectrometers have excellent selectivity but often face interference challenges with impure drug samples. In this work, we develop on-site sensors for morphine and structurally related opioid compounds based on in vitro-selected oligonucleotide affinity reagents known as aptamers. We employ a parallel-and-serial selection strategy to isolate aptamers that recognize heroin, morphine, codeine, hydrocodone, and hydromorphone, along with a toggle-selection approach to isolate aptamers that bind oxycodone and oxymorphone. We then utilize a new high-throughput sequencing-based approach to examine aptamer growth patterns over the course of selection and a high-throughput exonuclease-based screening assay to identify optimal aptamer candidates. Finally, we use two high-performance aptamers with KD of ∼1 µM to develop colorimetric dye-displacement assays that can specifically detect opioids like heroin and oxycodone at concentrations as low as 0.5 µM with a linear range of 0-16 µM. Importantly, our assays can detect opioids in complex chemical matrices, including pharmaceutical tablets and drug mixtures; in contrast, the conventional Marquis test completely fails in this context. These aptamer-based colorimetric assays enable the naked-eye identification of specific opioids within seconds and will play an important role in combatting opioid abuse.

2.
JACS Au ; 4(2): 760-770, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425914

RESUMO

We reported over 20 years ago MNS-4.1, the first DNA aptamer with a micromolar affinity for cocaine. MNS-4.1 is based on a structural motif that is very common in any random pool of oligonucleotides, and it is actually a nonspecific hydrophobic receptor with wide cross-reactivity with alkaloids and steroids. Despite such weaknesses preventing broad applications, this aptamer became widely used in proof-of-concept demonstrations of new formats of biosensors. We now report a series of progressively improved DNA aptamers recognizing cocaine, with the final optimized receptors having low nanomolar affinity and over a thousand-fold selectivity over the initial cross-reactants. In the process of optimization, we tested different methods to eliminate cross-reactivities and improve affinity, eventually achieving properties that are comparable to those of the reported monoclonal antibody candidates for the therapy of overdose. Multiple aptamers that we now report share structural motifs with the previously reported receptor for serotonin. Further mutagenesis studies revealed a palindromic, highly adaptable, broadly cross-reactive hydrophobic motif that could be rebuilt through mutagenesis, expansion of linker regions, and selections into receptors with exceptional affinities and varying specificities.

3.
J Am Chem Soc ; 146(5): 3230-3240, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277259

RESUMO

The ability to quantify cocaine in biological fluids is crucial for both the diagnosis of intoxication and overdose in the clinic as well as investigation of the drug's pharmacological and toxicological effects in the laboratory. To this end, we have performed high-stringency in vitro selection to generate DNA aptamers that bind cocaine with nanomolar affinity and clinically relevant specificity, thus representing a dramatic improvement over the current-generation, micromolar-affinity, low-specificity cocaine aptamers. Using these novel aptamers, we then developed two sensors for cocaine detection. The first, an in vitro fluorescent sensor, successfully detects cocaine at clinically relevant levels in 50% human serum without responding significantly to other drugs of abuse, endogenous substances, or a diverse range of therapeutic agents. The second, an electrochemical aptamer-based sensor, supports the real-time, seconds-resolved measurement of cocaine concentrations in vivo in the circulation of live animals. We believe the aptamers and sensors developed here could prove valuable for both point-of-care and on-site clinical cocaine detection as well as fundamental studies of cocaine neuropharmacology.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cocaína , Animais , Humanos , Aptâmeros de Nucleotídeos/química , Soro , Cocaína/química
4.
Anal Chem ; 95(49): 18258-18267, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033203

RESUMO

Fentanyl is a widely abused analgesic and anesthetic drug with a narrow therapeutic window that creates easy opportunities for overdose and death. Rapid, accurate, and sensitive fentanyl detection in biosamples is crucial for therapeutic drug monitoring and overdose diagnosis. Unfortunately, current methods are limited to either sophisticated laboratory-based tests or antibody-based immunoassays, which are prone to false results and are mainly used with urine samples. Here, we have utilized library-immobilized SELEX to isolate new aptamers─nucleic acid-based bioreceptors that are well-suited for biosensing─that can specifically bind fentanyl under physiological conditions. We isolated multiple aptamers with nanomolar affinity and excellent specificity against dozens of interferents and incorporated one of these into an electrochemical aptamer-based sensor that can rapidly detect fentanyl at clinically relevant concentrations in 50% diluted serum, urine, and saliva. Given the excellent performance of these sensors, we believe that they could serve as the basis for point-of-care devices for monitoring fentanyl during medical procedures and determining fentanyl overdose.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Fentanila , Anticorpos , Técnica de Seleção de Aptâmeros/métodos
5.
Acc Chem Res ; 56(13): 1731-1743, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37314701

RESUMO

Aptamers are short, single-stranded nucleic acids that have been selected from random libraries to bind specific molecules with high affinity via an in vitro method termed systematic evolution of ligands by exponential enrichment (SELEX). They have been generated for diverse targets ranging from metal ions to small molecules to proteins and have demonstrated considerable promise as biorecognition elements in sensors for applications including medical diagnostics, environmental monitoring, food safety, and forensic analysis. While aptamer sensors have made great strides in terms of sensitivity, specificity, turnaround time, and ease of use, several challenges have hindered their broader adoption. These include inadequate sensitivity, bottlenecks in aptamer binding characterization, and the cost and labor associated with aptamer engineering. In this Account, we describe our successes in using nuclease enzymes to address these problems. While working with nucleases to enhance the sensitivity of split aptamer sensors via enzyme-assisted target recycling, we serendipitously discovered that the digestion of DNA aptamers by exonucleases is inhibited when an aptamer is bound to a ligand. This finding served as the foundation for the development of three novel aptamer-related methodologies in our laboratory. First, we used exonucleases to truncate nonessential nucleotides from aptamers to generate structure-switching aptamers in a single step, greatly simplifying the aptamer engineering process. Second, we used exonucleases to develop a label-free aptamer-based detection platform that can utilize aptamers directly obtained from in vitro selection to detect analytes with ultralow background and high sensitivity. Through this approach, we were able to detect analytes at nanomolar levels in biological samples, with the capacity for achieving multiplexed detection by using molecular beacons. Finally, we used exonucleases to develop a high throughput means of characterizing aptamer affinity and specificity for a variety of ligands. This approach has enabled more comprehensive analysis of aptamers by greatly increasing the number of aptamer candidates and aptamer-ligand pairs that can be tested in a single experiment. We have also demonstrated the success of this method as a means for identifying new mutant aptamers with augmented binding properties and for quantifying aptamer-target affinity. Our enzymatic technologies can greatly streamline the aptamer characterization and sensor development process, and with the adoption of robotics or liquid handling systems in the future, it should be possible to rapidly identify the most suitable aptamers for a particular application from hundreds to thousands of candidates.


Assuntos
Aptâmeros de Nucleotídeos , Exonucleases , Ligantes , Técnica de Seleção de Aptâmeros/métodos , Aptâmeros de Nucleotídeos/química , Engenharia
6.
J Am Chem Soc ; 145(22): 12407-12422, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37217444

RESUMO

Aptamers are nucleic acid-based affinity reagents that have been incorporated into a variety of molecular sensor formats. However, many aptamer sensors exhibit insufficient sensitivity and specificity for real-world applications, and although considerable effort has been dedicated to improving sensitivity, sensor specificity has remained largely neglected and understudied. In this work, we have developed a series of sensors using aptamers for the small-molecule drugs flunixin, fentanyl, and furanyl fentanyl and compare their performance─in particular, focusing on their specificity. Contrary to expectations, we observe that sensors using the same aptamer operating under the same physicochemical conditions produce divergent responses to interferents depending on their signal transduction mechanism. For instance, aptamer beacon sensors are susceptible to false-positives from interferents that weakly associate with DNA, while strand-displacement sensors suffer from false-negatives due to interferent-associated signal suppression when both the target and interferent are present. Biophysical analyses suggest that these effects arise from aptamer-interferent interactions that are either nonspecific or induce aptamer conformational changes that are distinct from those induced by true target-binding events. We also demonstrate strategies for improving the sensitivity and specificity of aptamer sensors with the development of a "hybrid beacon," wherein the incorporation of a complementary DNA competitor into an aptamer beacon selectively hinders interferent─but not target─binding and signaling, while simultaneously overcoming signal suppression by interferents. Our results highlight the need for systematic and thorough testing of aptamer sensor response and new aptamer selection methods that optimize specificity more effectively than traditional counter-SELEX.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , DNA , DNA Complementar , Sensibilidade e Especificidade , Técnica de Seleção de Aptâmeros/métodos , Técnicas Biossensoriais/métodos
7.
J Am Chem Soc ; 145(1): 194-206, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36574475

RESUMO

Aptamers are oligonucleotide receptors with great potential for sensing and therapeutic applications. They are isolated from random libraries through an in vitro method termed systematic evolution of ligands by exponential enrichment (SELEX). Although SELEX-based methods have been widely employed over several decades, many aspects of the experimental process remain poorly understood in terms of how to adjust the selection conditions to obtain aptamers with the desired set of binding characteristics. As a result, SELEX is often performed with arbitrary parameters that tend to produce aptamers with insufficient affinity and/or specificity. Having a better understanding of these basic principles could increase the likelihood of obtaining high-quality aptamers. Here, we have systematically investigated how altering the selection stringency in terms of target concentration─which is essentially the root source of selection pressure for aptamer isolation─affects the outcome of SELEX. By performing four separate trials of SELEX for the same small-molecule target, we experimentally prove that the use of excessively high target concentrations promotes enrichment of low-affinity binders while also suppressing the enrichment of high-affinity aptamers. These findings should be broadly applicable across SELEX methods, given that they share the same core operating principle, and will be crucial for guiding selections to obtain high-quality aptamers in the future.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos , Ligantes
8.
Nucleic Acids Res ; 51(4): e19, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36583362

RESUMO

Aptamers are nucleic acid bioreceptors that have been used in various applications including medical diagnostics and as therapeutic agents. Identifying the most optimal aptamer for a particular application is very challenging. Here, we for the first time have developed a high-throughput method for accurately quantifying aptamer binding affinity, specificity, and cross-reactivity via the kinetics of aptamer digestion by exonucleases. We demonstrate the utility of this approach by isolating a set of new aptamers for fentanyl and its analogs, and then characterizing the binding properties of 655 aptamer-ligand pairs using our exonuclease digestion assay and validating the results with gold-standard methodologies. These data were used to select optimal aptamers for the development of new sensors that detect fentanyl and its analogs in different analytical contexts. Our approach dramatically accelerates the aptamer characterization process and streamlines sensor development, and if coupled with robotics, could enable high-throughput quantitative analysis of thousands of aptamer-ligand pairs.


Assuntos
Aptâmeros de Nucleotídeos , Exonucleases , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/química , Ligantes , Ácidos Nucleicos , Técnica de Seleção de Aptâmeros/métodos , Fentanila/análise , Robótica
9.
Anal Chem ; 94(28): 10082-10090, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35797425

RESUMO

Aptamers are single-stranded oligonucleotides isolated in vitro that bind specific targets with high affinity and are commonly used as receptors in biosensors. Aptamer-based dye-displacement assays are a promising sensing platform because they are label-free, sensitive, simple, and rapid. However, these assays can exhibit impaired sensitivity in biospecimens, which contain numerous interferents that cause unwanted absorbance, scattering, and fluorescence in the UV-vis region. Here, this problem is overcome by utilizing near-infrared (NIR) signatures of the dye 3,3'-diethylthiadicarbocyanine iodide (Cy5). Cy5 initially complexes with aptamers as monomers and dimers; aptamer-target binding displaces the dye into solution, resulting in the formation of J-aggregates that provide a detectable NIR signal. The generality of our assay is demonstrated by detecting three different small-molecule analytes with their respective DNA aptamers at clinically relevant concentrations in serum and urine. These successful demonstrations show the utility of dye-aptamer NIR biosensors for high-throughput detection of analytes in clinical specimens.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , Bioensaio , Técnicas Biossensoriais/métodos
10.
Angew Chem Int Ed Engl ; 61(3): e202112305, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34706127

RESUMO

Aptamers are promising biorecognition elements for sensors. However, aptamer-based assays often lack the requisite levels of sensitivity and/or selectivity because they typically employ structure-switching aptamers with attenuated affinity and/or utilize reporters that require aptamer labeling or which are susceptible to false positives. Dye-displacement assays offer a label-free, sensitive means for overcoming these issues, wherein target binding liberates a dye that is complexed with the aptamer, producing an optical readout. However, broad utilization of these assays has been limited. Here, we demonstrate a rational approach to develop colorimetric cyanine dye-displacement assays that can be broadly applied to DNA aptamers regardless of their structure, sequence, affinity, or the physicochemical properties of their targets. Our approach should accelerate the development of mix-and-measure assays that could be applied for diverse analytical applications.

11.
ACS Appl Mater Interfaces ; 13(15): 17330-17339, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33826286

RESUMO

On-site detection of multiple small-molecule analytes in complex sample matrixes would be highly valuable for diverse biosensing applications. Paper electrochemical devices (PEDs) offer an especially appealing sensing platform for such applications due to their low cost, portability, and ease of use. Using oligonucleotide-based aptamers as biorecognition elements, we here for the first time have developed a simple, inexpensive procedure for the fabrication of aptamer-modified multiplex PEDs (mPEDs), which can robustly and specifically detect multiple small molecules in complex samples. These devices are prepared via an ambient vacuum filtration technique using carbon and metal nanomaterials that yields precisely patterned sensing architecture featuring a silver pseudo-reference electrode, a gold counter electrode, and three gold working electrodes. The devices are user-friendly, and the fabrication procedure is highly reproducible. Each working electrode can be readily modified with different aptamers for sensitive and accurate detection of multiple small-molecule analytes in a single sample within seconds. We further demonstrate that the addition of a PDMS chamber allows us to achieve detection in microliter volumes of biological samples. We believe this approach should be highly generalizable, and given the rapid development of small-molecule aptamers, we envision that facile on-site multi-analyte detection of diverse targets in a drop of sample should be readily achievable in the near future.


Assuntos
Aptâmeros de Nucleotídeos/química , Eletroquímica/instrumentação , Papel , Dimetilpolisiloxanos/química , Nylons/química , Vácuo
12.
Anal Chem ; 93(6): 3172-3180, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33528997

RESUMO

Aptamers are nucleic acid-based affinity reagents that are isolated via an in vitro process known as systematic evolution of ligands by exponential enrichment (SELEX). Despite their great potential for a wide range of analytical applications, there are relatively few high-quality small-molecule binding aptamers, especially for "challenging" targets that have low water solubility and/or limited moieties for aptamer recognition. The use of libraries containing chemically modified bases may improve the outcome of some SELEX experiments, but this approach is costly and yields inconsistent results. Here, we demonstrate that a thoughtfully designed SELEX procedure with natural DNA libraries can isolate aptamers with high affinity and specificity for challenging small molecules, including targets for which such selections have previously failed. We first isolate a DNA aptamer with nanomolar affinity and high specificity for (-)-trans-Δ9-tetrahydrocannabinol (THC), a target previously thought to be unsuitable for SELEX with natural DNA libraries. We subsequently isolate aptamers that exhibit high affinity and cross-reactivity to two other challenging targets, synthetic cannabinoids UR-144 and XLR-11, while maintaining excellent specificity against a wide range of non-target interferents. Our findings demonstrate that natural nucleic acid libraries can yield high-quality aptamers for small-molecule targets, and we outline a robust workflow for isolating other such aptamers in future selection efforts.


Assuntos
Aptâmeros de Nucleotídeos , Canabinoides , Biblioteca Gênica , Ligantes , Técnica de Seleção de Aptâmeros
13.
Angew Chem Int Ed Engl ; 60(31): 16800-16823, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-33559947

RESUMO

Aptamers are short oligonucleotides isolated in vitro from randomized libraries that can bind to specific molecules with high affinity, and offer a number of advantages relative to antibodies as biorecognition elements in biosensors. However, it remains difficult and labor-intensive to develop aptamer-based sensors for small-molecule detection. Here, we review the challenges and advances in the isolation and characterization of small-molecule-binding DNA aptamers and their use in sensors. First, we discuss in vitro methodologies for the isolation of aptamers, and provide guidance on selecting the appropriate strategy for generating aptamers with optimal binding properties for a given application. We next examine techniques for characterizing aptamer-target binding and structure. Afterwards, we discuss various small-molecule sensing platforms based on original or engineered aptamers, and their detection applications. Finally, we conclude with a general workflow to develop aptamer-based small-molecule sensors for real-world applications.


Assuntos
Aptâmeros de Nucleotídeos/isolamento & purificação , Técnicas Biossensoriais , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/química , Desenho de Equipamento
14.
ACS Appl Mater Interfaces ; 13(8): 9491-9499, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33448791

RESUMO

Electrochemical aptamer-based (E-AB) sensors are a versatile sensing platform that can achieve rapid and robust target detection in complex matrices. However, the limited sensitivity of these sensors has impeded their translation from proof-of-concept to commercial products. Surface-bound aptamers must be sufficiently spaced to bind targets and subsequently fold for signal transduction. We hypothesized that electrodes fabricated using conventional methods result in sensing surfaces where only a fraction of aptamers are appropriately spaced to actively respond to the target. As an alternative, we presented a novel aptamer immobilization approach that favors sufficient spacing between aptamers at the microscale to achieve optimal target binding, folding, and signal transduction. We first demonstrated that immobilizing aptamers in their target-bound, folded state on gold electrode surfaces yields an aptamer monolayer that supports greater sensitivity and higher signal-to-noise ratio than traditionally prepared E-AB sensors. We also showed that performing aptamer immobilization under low ionic strength conditions rather than conventional high ionic strength buffer greatly improves E-AB sensor performance. We successfully tested our approach with three different small-molecule-binding aptamers, demonstrating its generalizability. On the basis of these results, we believe our electrode fabrication approach will accelerate development of high-performance sensors with the sensitivity required for real-world analytical applications.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Ácidos Nucleicos Imobilizados/química , Técnicas Biossensoriais/instrumentação , Cocaína/análise , Cocaína/química , DNA/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Ouro/química , Concentração de Íons de Hidrogênio , Concentração Osmolar , Razão Sinal-Ruído
15.
J Am Chem Soc ; 143(2): 805-816, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33378616

RESUMO

The systematic evolution of ligands by exponential enrichment (SELEX) process enables the isolation of aptamers from random oligonucleotide libraries. However, it is generally difficult to identify the best aptamer from the resulting sequences, and the selected aptamers often exhibit suboptimal affinity and specificity. Post-SELEX aptamer engineering can improve aptamer performance, but current methods exhibit inherent bias and variable rates of success or require specialized instruments. Here, we describe a generalizable method that utilizes exonuclease III and exonuclease I to interrogate the binding properties of small-molecule-binding aptamers in a rapid, label-free assay. By analyzing an ochratoxin-binding DNA aptamer and six of its mutants, we determined that ligand binding alters the exonuclease digestion kinetics to an extent that closely correlates with the aptamer's ligand affinity. We then utilized this assay to enhance the binding characteristics of a DNA aptamer which binds indiscriminately to ATP, ADP, AMP, and adenosine. We screened 13 mutants derived from this aptamer against all these analogues and identified two new high-affinity aptamers that solely bind to adenosine. We incorporated these two aptamers directly into an electrochemical aptamer-based sensor, which achieved a detection limit of 1 µM adenosine in 50% serum. We also confirmed the generality of our method to characterize target-binding affinities of protein-binding aptamers. We believe our approach is generalizable for DNA aptamers regardless of sequence, structure, and length and could be readily adapted into an automated format for high-throughput engineering of small-molecule-binding aptamers to acquire those with improved binding properties suitable for various applications.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Exodesoxirribonucleases/metabolismo , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/química , Digestão , Escherichia coli/enzimologia , Exodesoxirribonucleases/química
16.
Angew Chem Int Ed Engl ; 60(6): 2993-3000, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33152145

RESUMO

Electrochemical aptamer-based (E-AB) sensors offer a powerful and general means for analyte detection in complex samples for various applications. Paper-based E-AB sensors could enable portable, low-cost, and rapid detection of a broad range of targets, but it has proven challenging to fabricate suitable three-electrode systems on paper. Here, we demonstrate a simple, economic, and environmentally friendly strategy for fabricating aptamer-modified paper electrochemical devices (PEDs) via ambient vacuum filtration. The material, shape, size, and thickness of the three-electrode PED system can be fully customized. We developed aptamer-modified PEDs that enable sensitive and specific detection of small molecules in minimally processed biosamples. The sensitivity and stability of the PEDs are comparable to E-AB sensors based on commercial gold electrodes. We believe our strategy can lead to the development of high performance PEDs for the on-site detection of a variety of analytes.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , Papel , Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/instrumentação , Eletrodos , Ouro/química , Nanopartículas Metálicas/química
17.
Nucleic Acids Res ; 48(20): e120, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33053182

RESUMO

In vitro aptamer isolation methods can yield hundreds of potential candidates, but selecting the optimal aptamer for a given application is challenging and laborious. Existing aptamer characterization methods either entail low-throughput analysis with sophisticated instrumentation, or offer the potential for higher throughput at the cost of providing a relatively increased risk of false-positive or -negative results. Here, we describe a novel method for accurately and sensitively evaluating the binding between DNA aptamers and small-molecule ligands in a high-throughput format without any aptamer engineering or labeling requirements. This approach is based on our new finding that ligand binding inhibits aptamer digestion by T5 exonuclease, where the extent of this inhibition correlates closely with the strength of aptamer-ligand binding. Our assay enables accurate and efficient screening of the ligand-binding profiles of individual aptamers, as well as the identification of the best target binders from a batch of aptamer candidates, independent of the ligands in question or the aptamer sequence and structure. We demonstrate the general applicability of this assay with a total of 106 aptamer-ligand pairs and validate these results with a gold-standard method. We expect that our assay can be readily expanded to characterize small-molecule-binding aptamers in an automated, high-throughput fashion.


Assuntos
Aptâmeros de Nucleotídeos/química , Exodesoxirribonucleases/química , Técnica de Seleção de Aptâmeros/métodos , DNA/química , Sequências Repetidas Invertidas , Ligantes , Metanfetamina/análogos & derivados , Metanfetamina/química , Ligação Proteica
18.
Anal Chem ; 92(7): 5041-5047, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32181647

RESUMO

It is challenging to tune the response of biosensors to a set of ligands, for example, cross-reactivity to a given target family while maintaining high specificity against interferents, due to the lack of suitable bioreceptors. We present a novel approach for controlling the cross-reactivity of biosensors by employing defined mixtures of aptamers that have differing binding properties. As a demonstration, we develop assays for the specific detection of a family of illicit designer drugs, the synthetic cathinones, with customized responses to each target ligand and interferent. We first use a colorimetric dye-displacement assay to show that the binding spectra of dual-aptamer mixtures can be tuned by altering the molar ratio of these bioreceptors. Optimized assays achieve broad detection of synthetic cathinones with minimal response toward interferents and generally demonstrate better sensing performance than assays utilizing either aptamer alone. The generality of this strategy is demonstrated with a dual-aptamer electrochemical sensor. Our approach enables customization of biosensor responsiveness to an extent that has yet to be achieved through any previously reported aptamer engineering techniques such as sequence mutation or truncation. Since multiple aptamers for the designated target family can routinely be identified via high-throughput sequencing, we believe our strategy offers a generally applicable method for generating near-ideal aptamer biosensors for various analytical applications, including medical diagnostics, environmental monitoring, and drug detection.


Assuntos
Alcaloides/análise , Aptâmeros de Nucleotídeos/química , Benzotiazóis/química , Técnicas Biossensoriais , Carbocianinas/química , Técnicas Eletroquímicas , Técnica de Seleção de Aptâmeros
19.
Anal Chem ; 91(11): 7199-7207, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31050407

RESUMO

Colorimetric aptamer-based sensors offer a simple means of on-site or point-of-care analyte detection. However, these sensors are largely incapable of achieving naked-eye detection, because of the poor performance of the target-recognition and signal-reporting elements employed. To address this problem, we report a generalizable strategy for engineering novel multimodule split DNA constructs termed "CBSAzymes" that utilize a cooperative binding split aptamer (CBSA) as a highly target-responsive bioreceptor and a new, highly active split DNAzyme as an efficient signal reporter. CBSAzymes consist of two fragments that remain separate in the absence of target, but effectively assemble in the presence of the target to form a complex that catalyzes the oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid, developing a dark green color within 5 min. Such assay enables rapid, sensitive, and visual detection of small molecules, which has not been achieved with any previously reported split-aptamer-DNAzyme conjugates. In an initial demonstration, we generate a cocaine-binding CBSAzyme that enables naked-eye detection of cocaine at concentrations as low as 10 µM. Notably, CBSAzyme engineering is straightforward and generalizable. We demonstrate this by developing a methylenedioxypyrovalerone (MDPV)-binding CBSAzyme for visual detection of MDPV and 10 other synthetic cathinones at low micromolar concentrations, even in biological samples. Given that CBSAzyme-based assays are simple, label-free, rapid, robust, and instrument-free, we believe that such assays should be readily applicable for on-site visual detection of various important small molecules such as illicit drugs, medical biomarkers, and toxins in various sample matrices.


Assuntos
Aptâmeros de Nucleotídeos/química , Benzodioxóis/análise , Cocaína/análise , DNA Catalítico/química , Pirrolidinas/análise , Bibliotecas de Moléculas Pequenas/análise , Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais , Colorimetria , DNA Catalítico/metabolismo , Engenharia de Proteínas , Catinona Sintética
20.
Nucleic Acids Res ; 47(12): e71, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-30926988

RESUMO

Class-specific bioreceptors are highly desirable for recognizing structurally similar small molecules, but the generation of such affinity elements has proven challenging. We here develop a novel 'parallel-and-serial' selection strategy for isolating class-specific oligonucleotide-based receptors (aptamers) in vitro. This strategy first entails parallel selection to selectively enrich cross-reactive binding sequences, followed by serial selection that enriches aptamers binding to a designated target family. As a demonstration, we isolate a class-specific DNA aptamer against a family of designer drugs known as synthetic cathinones. The aptamer binds to 12 diverse synthetic cathinones with nanomolar affinity and does not respond to 11 structurally similar non-target compounds, some of which differ from the cathinone targets by a single atom. This is the first account of an aptamer exhibiting a combination of broad target cross-reactivity, high affinity and remarkable specificity. Leveraging the qualities of this aptamer, instantaneous colorimetric detection of synthetic cathinones at nanomolar concentrations in biological samples is achieved. Our findings significantly expand the binding capabilities of aptamers as class-specific bioreceptors and further demonstrate the power of rationally designed selection strategies for isolating customized aptamers with desired binding profiles. We believe that our aptamer isolation approach can be broadly applied to isolate class-specific aptamers for various small molecule families.


Assuntos
Aptâmeros de Nucleotídeos , Técnica de Seleção de Aptâmeros/métodos , Alcaloides/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/isolamento & purificação , Aptâmeros de Nucleotídeos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA