Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35745756

RESUMO

Gut modulation by multi-strain probiotics (MSPs) is considered an effective strategy for treating inflammatory bowel disease (IBD). The combination of nanomaterial-based MSPs can improve their viability and resistance and can allow their targeted release in the gastrointestinal tract to be achieved. Thus, our aim is to investigate the prospective role of MSP integration into nanomaterials (MSPNPs) and the underlying molecular mechanisms supporting their application as an alternative therapy for IBD using a colitis rat model. To induce the colitis model, rats received 5% DSS, and the efficacy of disease progression after oral administration of MSPNPs was assessed by evaluating the severity of clinical signs, inflammatory response, expressions of tight-junction-related genes and NLRP3 inflammasome and caspase-1 genes, microbial composition and histopathological examination of colonic tissues. The oral administration of MSPNPs successfully alleviated the colonic damage induced by DSS as proved by the reduced severity of clinical signs and fecal calprotectin levels. Compared with the untreated DSS-induced control group, the high activities of colonic NO and MPO and serum CRP levels were prominently reduced in rats treated with MSPNPs. Of note, colonic inflammation in the group treated with MSPNPs was ameliorated by downstreaming NLRP3 inflammasome, caspase-1, IL-18 and IL-1ß expressions. After colitis onset, treatment with MSPNPs was more effective than that with free MSPs in restoring the expressions of tight-junction-related genes (upregulation of occludin, ZO-1, JAM, MUC and FABP-2) and beneficial gut microbiota. Interestingly, treatment with MSPNPs accelerated the healing of intestinal epithelium as detected in histopathological findings. In conclusion, the incorporation of MPSs into nanomaterials is recommended as a perspective strategy to overcome the challenges they face and augment their therapeutic role for treating of colitis.

2.
Sci Rep ; 12(1): 5116, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332200

RESUMO

Promising therapy is needed for treating inflammatory bowel diseases (IBD) to overcome current treatment that inefficient and associated with unnecessary health risks. Recently, the concept of incorporating natural products into nanocarriers has been intended as a promising therapy for treating IBD via modulating their stability and bioavailability. Thus, we aimed to explore the potential alleviating effects of dietary nano-supplement combined with bacillus strains (Bacillus amyloliquefaciens; BANPs) in colitis model. Rats were orally gavaged by 5% DSS and the efficacy and mechanistic actions of BANPs were evaluated by assessing the severity of clinical signs and inflammatory and apoptosis response, histopathological and immunohistochemistry examination in colonic tissues. The severity of clinical signs was successfully alleviated and fecal Lcn-2 levels, an important colitic marker, were decreased in BANPs then free BA treated groups. In contrast, inflammatory markers overexpression IL-6, IL-1ß, TNFα, COX-2, and iNOS in the colitic group were reduced more prominently in BANPs treated group, unlike free BA. The amelioration of BANPs to colon injury was also correlated with oxidative stress suppression along with restoring total antioxidant capacity. Interestingly, BANPs treatment modulated apoptotic markers as proved by downregulation of cytochrome c, and caspase-3 and upregulation of Bcl-2 and Bax than free BA. The severity of the histopathological alterations in the colon was greatly reduced in BANPs than free BA groups. Remarkably, over-expression of ki67 and IL-6 in colonic tissues were suppressed in BANPs group. These findings together highlighted the beneficial efficacy of BANPs in IBD treatment which are evidenced by colonic inflammation alleviation. Taken together, these results recommend that BANPs is a promising agent that encourages its possible therapeutic role in colitis treatment.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Nanopartículas , Probióticos , Animais , Apoptose , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Inflamação/patologia , Doenças Inflamatórias Intestinais/patologia , Interleucina-6/metabolismo , Estresse Oxidativo , Probióticos/farmacologia , Probióticos/uso terapêutico , Ratos
3.
Pharmacogn Mag ; 13(Suppl 3): S430-S436, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29142395

RESUMO

CONTEXT: Cynara cardunculus or artichoke thistle belongs to the sunflower family and has a variety of cultivable forms. Historically, it was cultivated as a vegetable, but more recently, it is being used in cheese and biofuel preparation. Artichoke leaf extracts are also known for its medicinal purposes, particularly in reducing the elevated cholesterol levels in blood. Hypercholesterolemia (HC) is also associated with other complications such as impaired renal function and diabetes mellitus. A remedy without major side effects for HC and its associated complications is highly desirable. AIMS: We explored the effect of artichoke on the kidneys of hypercholesterolemic adult male Sprague-Dawley albino rats. SUBJECTS AND METHODS: Oral administration of 200 mg/kg and 400 mg/kg body weight (b.wt.) of C. cardunculus leaf extract (CCL) and C. cardunculus pulp extract (CCP) was made to male Sprague-Dawley albino hypercholesterolemic rats and investigated the levels of glucose, creatinine, uric acid, and urea in their blood. RESULTS: We observed that both CCL and CCP significantly reduced the creatinine and uric acid levels in the blood in a dose-dependent manner (P < 0.05). Both CCL and CCP significantly reduced the blood glucose levels (P < 0.05). Further, the histopathological investigation of the kidney sections showed that CCL treatment resolved HC-associated kidney damage. CONCLUSION: CCL not only has cholesterol-reducing capacity but also reduces the blood glucose levels and repairs the impaired kidney functions and damages. These findings are significant particularly because HC results in further complications such as diabetes and kidney damage, both of which can be treated effectively with artichoke. SUMMARY: C. cardunculus leaf extract (CCL) not only has cholesterol-reducing capacity but also reduces the blood glucose levels and repairs the impaired kidney functions and damages. This study evaluated the nephroprotective role of CCL and CCP in hypercholesterolemic rats and observed that both CCL and CCP significantly reduced the creatinine and uric acid levels in hypercholesterolemic rats in a dose-dependent manner. Abbreviations used: HC: Hypercholesterolemia, WHO: World Health Organization, BAS: Bile acid sequestrant, PCSK9: Proprotein convertase subtilisin kexin type 9, ALE: Artichoke leaf extract, CCL: Cynara cardunculus leaf extract, CCP: Cynara cardunculus pulp extract, BWG%: Body weight gain%, FER: Food-efficiency ratio.

4.
Pharmacognosy Res ; 9(2): 200-207, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28539746

RESUMO

CONTEXT: Heart, kidneys, and liver are the vital organs present in vertebrates and some other animals. They have a wide range of functions, such as maintaining homeostasis, detoxification, protein synthesis, and production of biochemical, that are necessary for digestion and maintaining circulation. These organs are necessary for the survival, and currently, there are no means to compensate for the absence of their functionalities in a long term. The damage of liver can affect other vital organs, including kidneys and heart. AIMS: This study aimed at investigating the effect of sorrel extract in the treatment of some of the diseases of liver, kidneys, and heart using experimental animals. SETTINGS AND DESIGN: This study is a randomized, controlled clinical trial. MATERIALS AND METHODS: Forty mature male albino rats, weighing 150-160 g, were used and divided into four equal groups. One group was kept as negative control (C -ve) group whereas the other three groups were injected subcutaneously (s/c) with carbon tetrachloride in 50% V/V paraffin oil (2 ml/kg b.wt.). Tissue specimens were obtained from all the groups and fixed in 10% formalin for histopathological examination. STATISTICAL ANALYSIS USED: The obtained data were statistically analyzed using computerized Superior Performing Statistical Software (SPSS) at SAS Institute, Cary, NC, USA. Effects of different treatments were analyzed by one-way analysis of variance test using Duncan's multiple range test, and P < 0.05 was also used to indicate the significance level between different groups (Snedecor and Cochran, 1967). RESULTS: The resulting data showed that the sorrel extract demonstrated a significant enhancement in liver intoxication and all other tested parameters. In addition, it also helped in minimizing the structural tissue damages in the vital organs. CONCLUSIONS: According to these results, sorrel can impair the liver function and maintain the functions of the vital organs. SUMMARY: All rats, poisoned with carbon tetrachloride (CCl4) and administrated with all tested herbs, showed a significant increase in BWG as compared to the control (+ve) groupSorrel extract demonstrates a significant enhancement in liver intoxication and all other tested parameters and can reduce the lipid peroxidation in CCl4-induced liver damageAll rats, poisoned with CCl4 and orally fed with all tested herbs, showed a significant decrease in the mentioned parameters when compared to control (+ve) group. Abbreviations Used: ALT: Alanine transaminase; AST: Aspartate transaminase; ALP: Alkaline phosphatase; ALB: Albumin; BWG%: Body weight gain percentage; CCl4: Carbon tetrachloride; CAT: Catalase; GGT: Gamma-glutamyl transferase; GSH-Px: Glutathione peroxidase; GLOB: Globulin; iNOS: Inducible nitric oxide synthase; MDA: Malondialdehyde; RP: Rumex patientia; SOD: Superoxide dismutase; TP: Total protein; TC: Total cholesterol; TGs: Riglycerides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA