Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 10(2): 385-401, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38435509

RESUMO

Interactions between ribosome-bound nascent chains (RNCs) and ribosomal components are critical to elucidate the mechanism of cotranslational protein folding. Nascent protein-ribosome contacts within the ribosomal exit tunnel were previously assessed mostly in the presence of C-terminal stalling sequences, yet little is known about contacts taking place in the absence of these strongly interacting motifs. Further, there is nearly no information about ribosomal proteins (r-proteins) interacting with nascent chains within the outer surface of the ribosome. Here, we combine chemical cross-linking, single-particle cryo-EM, and fluorescence anisotropy decays to determine the structural features of ribosome-bound apomyoglobin (apoMb). Within the ribosomal exit tunnel core, interactions are similar to those identified in previous reports. However, once the RNC enters the tunnel vestibule, it becomes more dynamic and interacts with ribosomal RNA (rRNA) and the L23 r-protein. Remarkably, on the outer surface of the ribosome, RNCs interact mainly with a highly conserved nonpolar patch of the L23 r-protein. RNCs also comprise a compact and dynamic N-terminal region lacking contact with the ribosome. In all, apoMb traverses the ribosome and interacts with it via its C-terminal region, while N-terminal residues sample conformational space and form a compact subdomain before the entire nascent protein sequence departs from the ribosome.

2.
J Phys Chem B ; 127(18): 3990-4014, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37130318

RESUMO

Proteins are particularly prone to aggregation immediately after release from the ribosome, and it is therefore important to elucidate the role of chaperones during these key steps of protein life. The Hsp70 and trigger factor (TF) chaperone systems interact with nascent proteins during biogenesis and immediately post-translationally. It is unclear, however, whether these chaperones can prevent formation of soluble and insoluble aggregates. Here, we address this question by monitoring the solubility and structural accuracy of globin proteins biosynthesized in an Escherichia coli cell-free system containing different concentrations of the bacterial Hsp70 and TF chaperones. We find that Hsp70 concentrations required to grant solubility to newly synthesized proteins are extremely sensitive to client-protein sequence. Importantly, Hsp70 concentrations yielding soluble client proteins are insufficient to prevent formation of soluble aggregates. In fact, for some aggregation-prone protein variants, avoidance of soluble-aggregate formation demands Hsp70 concentrations that exceed cellular levels in E. coli. In all, our data highlight the prominent role of soluble aggregates upon nascent-protein release from the ribosome and show the limitations of the Hsp70 chaperone system in the case of highly aggregation-prone proteins. These results demonstrate the need to devise better strategies to prevent soluble-aggregate formation upon release from the ribosome.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Escherichia coli/metabolismo , Solubilidade , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Escherichia coli/química , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA