Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(14): 10054-10062, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38527458

RESUMO

Perovskite nanocrystals (PNCs) bear a huge potential for widespread applications, such as color conversion, X-ray scintillators, and active laser media. However, the poor intrinsic stability and high susceptibility to environmental stimuli including moisture and oxygen have become bottlenecks of PNC materials for commercialization. Appropriate barrier material design can efficiently improve the stability of the PNCs. Particularly, the strategy for packaging PNCs in organosilicon matrixes can integrate the advantages of inorganic-oxide-based and polymer-based encapsulation routes. However, the inert long-carbon-chain ligands (e.g., oleic acid, oleylamine) used in the current ligand systems for silicon-based encapsulation are detrimental to the cross-linking of the organosilicon matrix, resulting in performance deficiencies in the nanocrystal films, such as low transparency and large surface roughness. Herein, we propose a dual-organosilicon ligand system consisting of (3-aminopropyl)triethoxysilane (APTES) and (3-aminopropyl)triethoxysilane with pentanedioic anhydride (APTES-PA), to replace the inert long-carbon-chain ligands for improving the performance of organosilicon-coated PNC films. As a result, strongly fluorescent PNC films prepared by a facile solution-casting method demonstrate high transparency and reduced surface roughness while maintaining high stability in various harsh environments. The optimized PNC films were eventually applied in an X-ray imaging system as scintillators, showing a high spatial resolution above 20 lp/mm. By designing this promising dual organosilicon ligand system for PNC films, our work highlights the crucial influence of the molecular structure of the capping ligands on the optical performance of the PNC film.

2.
Nano Lett ; 23(5): 1637-1644, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36852434

RESUMO

Perovskite gain materials can sustain continuous-wave lasing at room-temperature. A first step toward the unachieved goal of electrically excited lasing would be an improvement in gain when electrical stimulation is added to the optical. However, to date, electrical stimulation supplementing optical has reduced gain performance. We find that amplified spontaneous emission (ASE) in a CsPbBr3 perovskite light-emitting diode (LED) held under invariant subthreshold optical excitation can be turned on/off by the addition/removal of an electric field. A positive bias voltage leads to a factor of 3 reduction in the optical ASE threshold, the cause of which can be attributed to an enhancement of the radiative rate. The slow components (10 s time scale) of the modulation in the photoluminescence and ASE when the voltage is changed suggest that the relocation of mobile ions trigger the increased radiative rate and observed lowering of ASE thresholds.

3.
ACS Appl Mater Interfaces ; 15(6): 8436-8445, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36720173

RESUMO

To date, thermal nanoimprint lithography (NIL) for patterning hybrid perovskites has always involved an intricate etching step of a hard stamp material or its master. Here, we demonstrate for the first time the successful nanopatterning of a perovskite film by NIL with a low-cost polymeric stamp. The stamp consists of a dichromated gelatin grating structured by holographic lithography. The one-dimensional grating is imprinted into a perovskite film at 95 °C and 90 MPa for 10 min, resulting in a high quality second-order distributed feedback (DFB) laser. The laser exhibits an excellent performance with a threshold of 81 µJ/cm2, a line width of 0.32 nm, and a pronounced linear polarization. This novel approach enables cost-effective fabrication of high-quality DFB lasers compatible with different perovskite compositions and photonic nanostructures for a wide range of applications.

4.
ACS Energy Lett ; 7(7): 2273-2281, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35844471

RESUMO

Monolithic two-terminal (2T) perovskite/CuInSe2 (CIS) tandem solar cells (TSCs) combine the promise of an efficient tandem photovoltaic (PV) technology with the simplicity of an all-thin-film device architecture that is compatible with flexible and lightweight PV. In this work, we present the first-ever 2T perovskite/CIS TSC with a power conversion efficiency (PCE) approaching 25% (23.5% certified, area 0.5 cm2). The relatively planar surface profile and narrow band gap (∼1.03 eV) of our CIS bottom cell allow us to exploit the optoelectronic properties and photostability of a low-Br-containing perovskite top cell as revealed by advanced characterization techniques. Current matching was attained by proper tuning of the thickness and bandgap of the perovskite, along with the optimization of an antireflective coating for improved light in-coupling. Our study sets the baseline for fabricating efficient perovskite/CIS TSCs, paving the way for future developments that might push the efficiencies to over 30%.

5.
J Phys Chem Lett ; 12(9): 2293-2298, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33651626

RESUMO

Recently, continuous-wave (CW) lasing was demonstrated at room temperature in quasi-2D perovskites. For 3D films, CW lasing at room temperature remains challenging. Issues hampering 3D materials include the temperature dependence of the (a) distribution of carrier energies, (b) buildup of photoinduced nonradiative channels, and (c) rates of bimolecular versus Auger recombination. We study the latter in a phase-stable 3D perovskite using high-index substrates to completely suppress amplified spontaneous emission (ASE). The bimolecular recombination coefficient decreases from 80 to 290 K (from (6.4 to 1.1) × 10-10 cm-3 s-1), whereas the Auger coefficient stays constant at 3 × 10-29 cm-6 s-1. Above 250 K, the Auger rate exceeds the bimolecular rate at carrier densities corresponding to the ASE threshold. At lower temperatures, the decrease in the bimolecular rate coefficient with increasing temperature and the fraction of photoluminescence in the ASE band determine the temperature dependence of the ASE threshold.

6.
Opt Express ; 28(4): 5085-5104, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121737

RESUMO

Silicon nitride (Si3N4) waveguides offer low-loss wave propagation over a wide spectral range including visible wavelengths and lend themselves to photonic integrated circuits for bio-photonic applications. The Si3N4 device portfolio, however, is so far limited to passive devices that need to be fed by external light sources. This often requires delicate and costly fiber-chip coupling schemes that are subject to stringent alignment tolerances. In this paper, we present and investigate a class of lasers that combine Si3N4 waveguides with light-emitting organic cladding materials in a hybrid approach. These Si3N4-organic hybrid (SiNOH) lasers are operated by optical pumping from the top with low alignment precision. We theoretically and experimentally investigate different SiNOH laser concepts based on spiral-shaped ring resonators and distributed feedback (DFB) resonators. While our devices are designed for an emission wavelength of approximately 600 nm, the SiNOH laser concept can be transferred to a large range of wavelengths in the visible spectrum. The devices are amenable to cost-efficient mass production and have the potential to address a wide range of applications in bio-photonics and point-of-care diagnostics.

7.
Nat Commun ; 10(1): 988, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816111

RESUMO

Sustained stimulated emission under continuous-wave (CW) excitation is a prerequisite for new semiconductor materials being developed for laser gain media. Although hybrid organic-inorganic lead-halide perovskites have attracted much attention as optical gain media, the demonstration of room-temperature CW lasing has still not been realized. Here, we present a critical step towards this goal by demonstrating CW amplified spontaneous emission (ASE) in a phase-stable perovskite at temperatures up to 120 K. The phase-stable perovskite maintains its room-temperature phase while undergoing cryogenic cooling and can potentially support CW lasing also at higher temperatures. We find the threshold level for CW ASE to be 387 W cm-2 at 80 K. These results indicate that easily-fabricated single-phase perovskite thin films can sustain CW stimulated emission, potential at higher temperatures as well, by further optimization of the material quality in order to extend the carrier lifetimes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA