Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230011, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583474

RESUMO

Most emissions scenarios suggest temperature and precipitation regimes will change dramatically across the globe over the next 500 years. These changes will have large impacts on the biosphere, with species forced to migrate to follow their preferred environmental conditions, therefore moving and fragmenting ecosystems. However, most projections of the impacts of climate change only reach 2100, limiting our understanding of the temporal scope of climate impacts, and potentially impeding suitable adaptive action. To address this data gap, we model future climate change every 20 years from 2000 to 2500 CE, under different CO2 emissions scenarios, using a general circulation model. We then apply a biome model to these modelled climate futures, to investigate shifts in climatic forcing on vegetation worldwide, the feasibility of the migration required to enact these modelled vegetation changes, and potential overlap with human land use based on modern-day anthromes. Under a business-as-usual scenario, up to 40% of terrestrial area is expected to be suited to a different biome by 2500. Cold-adapted biomes, particularly boreal forest and dry tundra, are predicted to experience the greatest losses of suitable area. Without mitigation, these changes could have severe consequences both for global biodiversity and the provision of ecosystem services. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Biodiversidade , Ecossistema , Humanos , Tundra , Mudança Climática , Temperatura
2.
R Soc Open Sci ; 10(3): 221507, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938535

RESUMO

Many modern extinction drivers are shared with past mass extinction events, such as rapid climate warming, habitat loss, pollution and invasive species. This commonality presents a key question: can the extinction risk of species during past mass extinction events inform our predictions for a modern biodiversity crisis? To investigate if it is possible to establish which species were more likely to go extinct during mass extinctions, we applied a functional trait-based model of extinction risk using a machine learning algorithm to datasets of marine fossils for the end-Permian, end-Triassic and end-Cretaceous mass extinctions. Extinction selectivity was inferred across each individual mass extinction event, before testing whether the selectivity patterns obtained could be used to 'predict' the extinction selectivity exhibited during the other mass extinctions. Our analyses show that, despite some similarities in extinction selectivity patterns between ancient crises, the selectivity of mass extinction events is inconsistent, which leads to a poor predictive performance. This lack of predictability is attributed to evolution in marine ecosystems, particularly during the Mesozoic Marine Revolution, associated with shifts in community structure alongside coincident Earth system changes. Our results suggest that past extinctions are unlikely to be informative for predicting extinction risk during a projected mass extinction.

3.
Glob Chang Biol ; 28(2): 349-361, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34558764

RESUMO

Anthropogenic activity is changing Earth's climate and ecosystems in ways that are potentially dangerous and disruptive to humans. Greenhouse gas concentrations in the atmosphere continue to rise, ensuring that these changes will be felt for centuries beyond 2100, the current benchmark for projection. Estimating the effects of past, current, and potential future emissions to only 2100 is therefore short-sighted. Critical problems for food production and climate-forced human migration are projected to arise well before 2100, raising questions regarding the habitability of some regions of the Earth after the turn of the century. To highlight the need for more distant horizon scanning, we model climate change to 2500 under a suite of emission scenarios and quantify associated projections of crop viability and heat stress. Together, our projections show global climate impacts increase significantly after 2100 without rapid mitigation. As a result, we argue that projections of climate and its effects on human well-being and associated governance and policy must be framed beyond 2100.


Assuntos
Mudança Climática , Gases de Efeito Estufa , Efeitos Antropogênicos , Atmosfera , Ecossistema , Humanos
4.
J Law Med ; 28(2): 462-474, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33768752

RESUMO

With advances in genomic research playing an important role in the development of clinical applications, it is important that ethical guidance for researchers is contemporary and relevant. In this article we analyse the relevant provisions in Australia's National Statement on Ethical Conduct in Human Research (revised in 2018) and consider the guidance it provides for contemporary genomics research. We analyse four key areas: genomic information; biobanking and use of human tissue; consent to participation in genomic research, including specific issues related to participation by children; and return of findings. We conclude that Australia's National Statement is well-placed to provide guidance to Australian researchers on issues relating to genomics, although there is scope for additional guidance on some issues related to consent.


Assuntos
Bancos de Espécimes Biológicos , Genômica , Austrália , Criança , Humanos , Consentimento Livre e Esclarecido , Pesquisadores
5.
Proc Biol Sci ; 287(1929): 20201125, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32546099

RESUMO

The decline in species richness from the equator to the poles is referred to as the latitudinal diversity gradient (LDG). Higher equatorial diversity has been recognized for over 200 years, but the consistency of this pattern in deep time remains uncertain. Examination of spatial biodiversity patterns in the past across different global climate regimes and continental configurations can reveal how LDGs have varied over Earth history and potentially differentiate between suggested causal mechanisms. The Late Permian-Middle Triassic represents an ideal time interval for study, because it is characterized by large-scale volcanic episodes, extreme greenhouse temperatures and the most severe mass extinction event in Earth history. We examined terrestrial and marine tetrapod spatial biodiversity patterns using a database of global tetrapod occurrences. Terrestrial tetrapods exhibit a bimodal richness distribution throughout the Late Permian-Middle Triassic, with peaks in the northern low latitudes and southern mid-latitudes around 20-40° N and 60° S, respectively. Marine reptile fossils are known almost exclusively from the Northern Hemisphere in the Early and Middle Triassic, with highest diversity around 20° N. Reconstructed terrestrial LDGs contrast strongly with the generally unimodal gradients of today, potentially reflecting high global temperatures and prevailing Pangaean super-monsoonal climate system during the Permo-Triassic.


Assuntos
Biodiversidade , Extinção Biológica , Animais , Clima , Mudança Climática , Planeta Terra , Ecossistema , Fósseis , Temperatura Alta , Répteis
6.
Arch Toxicol ; 92(4): 1609-1623, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29362862

RESUMO

A recent flow cytometry-based in vivo mutagenicity assay involves the hemizygous phosphatidylinositol class A (Pig-a) gene. Pig-a forms the catalytic subunit of N-acetylglucosaminyltransferase required for glycophosphatidylinositol (GPI) anchor biosynthesis. Mutations in Pig-a prevent GPI-anchor synthesis resulting in loss of cell-surface GPI-linked proteins. The aim of the current study was to develop and validate an in vitro Pig-a assay in L5178Y mouse lymphoma cells. Ethyl methanesulfonate (EMS)-treated cells (186.24-558.72 µg/ml; 24 h) were used for method development and antibodies against GPI-linked CD90.2 and stably expressed CD45 were used to determine GPI-status by flow cytometry. Antibody concentration and incubation times were optimised (0.18 µg/ml, 30 min, 4 °C) and Zombie Violet™ (viability marker; 0.5%, 30 min, RT) was included. The optimum phenotypic expression period was 8 days. The low background mutation frequency of GPI-deficiency [GPI(-)] in L5178Y cells (0.1%) constitutes a rare event, thus flow cytometry acquisition parameters were optimised; 104 cells were measured at medium flow rate to ensure a CV ≤ 30%. Spiking known numbers of GPI(-) cells into a wild-type population gave high correlation between measured and spiked numbers (R2 0.999). We applied the in vitro Pig-a assay to a selection of well-validated genotoxic and non-genotoxic compounds. EMS, N-ethyl-N-nitrosourea and 4-nitroquinoline-N-oxide dose dependently increased numbers of GPI(-) cells, while etoposide, mitomycin C, and a bacterial-specific mutagen did not. Cycloheximide and sodium chloride were negative. Sanger sequencing revealed Pig-a mutations in the GPI(-) clones. In conclusion, this in vitro Pig-a assay could complement the in vivo version, and follow up weak Ames positives and late-stage human metabolites or impurities.


Assuntos
Proteínas de Membrana/genética , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Animais , Camundongos , Células Tumorais Cultivadas
7.
J Bone Miner Res ; 32(7): 1421-1431, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28370412

RESUMO

Bone is a common site for metastasis in breast cancer patients and is associated with a series of complications that significantly compromise patient survival, partially due to the advanced stage of disease at the time of detection. Currently, no clinically-approved biomarkers can identify or predict the development of bone metastasis. We recently identified a unique peptide fragment of parathyroid hormone-related protein (PTHrP), PTHrP(12-48), as a validated serum biomarker in breast cancer patients that correlates with and predicts the presence of bone metastases. In this study, the biological activity and mode of action of PTHrP(12-48) was investigated. Sequence-based and structure-based bioinformatics techniques predicted that the PTHrP(12-48) fragment formed an alpha helical core followed by an unstructured region after residue 40 or 42. Thereafter, detailed structure alignment and molecular docking simulations predicted a lack of interaction between PTHrP(12-48) and the cognate PTH1 receptor (PTHR1). The in silico prediction was confirmed by the lack of PTHrP(12-48)-stimulated cAMP accumulation in PTHR1-expressing human SaOS2 cells. Using a specific human PTHrP(12-48) antibody that we developed, PTHrP(12-48) was immunolocalized in primary and bone metastatic human breast cancer cells, as well as within human osteoclasts (OCLs) in bone metastasis biopsies, with little or no localization in other resident bone or bone marrow cells. In vitro, PTHrP(12-48) was internalized into cultured primary human OCLs and their precursors within 60 min. Interestingly, PTHrP(12-48) treatment dose-dependently suppressed osteoclastogenesis, via the induction of apoptosis in both OCL precursors as well as in mature OCLs, as measured by the activation of cleaved caspase 3. Collectively, these data suggest that PTHrP(12-48) is a bioactive breast cancer-derived peptide that locally regulates the differentiation of hematopoietic cells and the activity of osteoclasts within the tumor-bone marrow microenvironment, perhaps to facilitate tumor control of bone. © 2017 American Society for Bone and Mineral Research.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Diferenciação Celular , Microambiente Celular , Osteoclastos/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Metástase Neoplásica , Osteoclastos/patologia
8.
Environ Microbiol ; 12(3): 642-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20002136

RESUMO

Globally, soil microbes preside over vast carbon stores, and both microbial biomass and activity are known to be regulated by bottom-up controls, that is, limitation by nutrients and energy. However, there is evidence that grazing by protozoans exerts top-down controls on biomass. Here, we investigate top-down control by phage on soil microbes using an experimental site near Barrow, Alaska (71 degrees N, 157 degrees W) during the 2007 growing season. Soil measurements were taken from sites that covered a range of microtopographical features within a drained and thawed lake basin including high- and low-centred ice-wedge polygons to estimate the availability of carbon and nitrogen for microbes. Using both field and laboratory experiments, we successfully increased both microbial biomass and respiration by decreasing phage populations. The addition of carbon and nutrients to soils had no significant effects on biomass or respiration, indicating a lack of bottom-up controls. Additionally, we present the first use of tea extracts as a potent anti-phage agent in soils. Our results suggest that top-down controls, such as phage predation, are critical to regulation of microbial activities in Arctic soils.


Assuntos
Biomassa , Ecossistema , Microbiologia do Solo , Alaska , Regiões Árticas , Bacteriófagos/patogenicidade , Carbono/metabolismo , Respiração Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA