Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(9): e0204505, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30261009

RESUMO

Algae are often promoted as feedstock organisms to produce a sustainable petroleum fossil fuel alternative. However, to induce lipid accumulation most often requires a severe stress that is difficult to induce in large batch cultures. The objective of this study is to analyze and mathematically model heat stress on growth, chlorophyll content, triacylglyceride, and starch synthesis in algae. We initially screened 30 algal species for the most pronounced induction of lipid droplets from heat stress using confocal microscopy and mass spectroscopy techniques. One species, Coccomyxa subellipsoidea C169, was selected and subjected to further biochemical analyses using a jacketed bioreactor amended with 1% CO2 at 25°C, 30°C, 32°C, 33°C, 34°C, 35°C, and 36°C. Lipid and starch accumulation was less extreme than N stress. Growth was reduced above 25°C, but heat stress induced lipid droplet synthesis was negatively correlated with growth only past a demonstrated threshold temperature above 32°C. The optimal temperature for lipid accumulation was 35°C, which led to 6% of dry weight triglyceride content and a 72% reduction from optimal growth after 5 days. Fatty acid influx rates into triglycerides and 15N labeling of amino acids and proteins indicate that heat stress is mechanistically distinct from N stress. Thus, this study lends support to a novel hypothesis that lipid droplet triglycerides result from a redistribution of carbon flux as fatty acids to neutral storage lipids over membrane or other lipids.


Assuntos
Biocombustíveis , Clorófitas/metabolismo , Microalgas/metabolismo , Biomassa , Reatores Biológicos , Clorofila/metabolismo , Clorófitas/classificação , Clorófitas/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Resposta ao Choque Térmico , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Microalgas/classificação , Microalgas/crescimento & desenvolvimento , Modelos Biológicos , Nitrogênio/metabolismo , Filogenia , Especificidade da Espécie , Amido/metabolismo , Temperatura , Triglicerídeos/metabolismo
2.
Plant Physiol ; 174(4): 2146-2165, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28652262

RESUMO

Microalgae are proposed as feedstock organisms useful for producing biofuels and coproducts. However, several limitations must be overcome before algae-based production is economically feasible. Among these is the ability to induce lipid accumulation and storage without affecting biomass yield. To overcome this barrier, a chemical genetics approach was employed in which 43,783 compounds were screened against Chlamydomonas reinhardtii, and 243 compounds were identified that increase triacylglyceride (TAG) accumulation without terminating growth. Identified compounds were classified by structural similarity, and 15 were selected for secondary analyses addressing impacts on growth fitness, photosynthetic pigments, and total cellular protein and starch concentrations. TAG accumulation was verified using gas chromatography-mass spectrometry quantification of total fatty acids, and targeted TAG and galactolipid measurements were performed using liquid chromatography-multiple reaction monitoring/mass spectrometry. These results demonstrated that TAG accumulation does not necessarily proceed at the expense of galactolipid. Untargeted metabolite profiling provided important insights into pathway shifts due to five different compound treatments and verified the anabolic state of the cells with regard to the oxidative pentose phosphate pathway, Calvin cycle, tricarboxylic acid cycle, and amino acid biosynthetic pathways. Metabolite patterns were distinct from nitrogen starvation and other abiotic stresses commonly used to induce oil accumulation in algae. The efficacy of these compounds also was demonstrated in three other algal species. These lipid-inducing compounds offer a valuable set of tools for delving into the biochemical mechanisms of lipid accumulation in algae and a direct means to improve algal oil content independent of the severe growth limitations associated with nutrient deprivation.


Assuntos
Clorófitas/metabolismo , Metabolismo dos Lipídeos , Metabolômica/métodos , Vias Biossintéticas , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/metabolismo , Clorófitas/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas , Ensaios de Triagem em Larga Escala , Lipídeos/química , Metaboloma , Análise Multivariada , Fotossíntese , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/metabolismo , Amido/metabolismo
3.
J Biol Chem ; 292(1): 361-374, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27903654

RESUMO

Deriving biofuels and other lipoid products from algae is a promising future technology directly addressing global issues of atmospheric CO2 balance. To better understand the metabolism of triglyceride synthesis in algae, we examined their metabolic origins in the model species, Coccomyxa subellipsoidea C169, using stable isotopic labeling. Labeling patterns arising from [U-13C]glucose, 13CO2, or D2O supplementation were analyzed by GC-MS and/or LC-MS over time courses during nitrogen starvation to address the roles of catabolic carbon recycling, acyl chain redistribution, and de novo fatty acid (FA) synthesis during the expansion of the lipid bodies. The metabolic origin of stress-induced triglyceride was found to be a continuous 8:2 ratio between de novo synthesized FA and acyl chain transfer from pre-stressed membrane lipids with little input from lipid remodeling. Membrane lipids were continually synthesized with associated acyl chain editing during nitrogen stress, in contrast to an overall decrease in total membrane lipid. The incorporation rates of de novo synthesized FA into lipid classes were measured over a time course of nitrogen starvation. The synthesis of triglycerides, phospholipids, and galactolipids followed a two-stage pattern where nitrogen starvation resulted in a 2.5-fold increase followed by a gradual decline. Acyl chain flux into membrane lipids was dominant in the first stage followed by triglycerides. These data indicate that the level of metabolic control that determines acyl chain flux between membrane lipids and triglycerides during nitrogen stress relies primarily on the Kennedy pathway and de novo FA synthesis with limited, defined input from acyl editing reactions.


Assuntos
Carbono/metabolismo , Ácidos Graxos/metabolismo , Marcação por Isótopo/métodos , Lipídeos de Membrana/metabolismo , Microalgas/metabolismo , Nitrogênio/deficiência , Triglicerídeos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas
4.
J Synchrotron Radiat ; 22(3): 776-80, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931096

RESUMO

Soft X-ray angle-resolved photoemission has been performed for metallic V2O3. By combining a microfocus beam (40 µm × 65 µm) and micro-positioning techniques with a long-working-distance microscope, it has been possible to observe band dispersions from tiny cleavage surfaces with a typical size of several tens of µm. The photoemission spectra show a clear position dependence, reflecting the morphology of the cleaved sample surface. By selecting high-quality flat regions on the sample surface, it has been possible to perform band mapping using both photon-energy and polar-angle dependences, opening the door to three-dimensional angle-resolved photoemission spectroscopy for typical three-dimensional correlated materials where large cleavage planes are rarely obtained.

5.
BMC Microbiol ; 13: 265, 2013 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-24267221

RESUMO

BACKGROUND: Anaerobic ammonium oxidizing (anammox) bacteria may contribute up to 50% to the global nitrogen production, and are, thus, key players of the global nitrogen cycle. The molecular mechanism of anammox was recently elucidated and is suggested to proceed through a branched respiratory chain. This chain involves an exceptionally high number of c-type cytochrome proteins which are localized within the anammoxosome, a unique subcellular organelle. During transport into the organelle the c-type cytochrome apoproteins need to be post-translationally processed so that heme groups become covalently attached to them, resulting in mature c-type cytochrome proteins. RESULTS: In this study, a comparative genome analysis was performed to identify the cytochrome c maturation system employed by anammox bacteria. Our results show that all available anammox genome assemblies contain a complete type II cytochrome c maturation system. CONCLUSIONS: Our working model suggests that this machinery is localized at the anammoxosome membrane which is assumed to be the locus of anammox catabolism. These findings will stimulate further studies in dissecting the molecular and cellular basis of cytochrome c biogenesis in anammox bacteria.


Assuntos
Compostos de Amônio/metabolismo , Bactérias/genética , Bactérias/metabolismo , Citocromos c/metabolismo , Redes e Vias Metabólicas/genética , Processamento de Proteína Pós-Traducional , Biologia Computacional , Genoma Bacteriano , Proteínas de Membrana/metabolismo , Organelas/enzimologia , Organelas/metabolismo , Oxirredução
6.
Eukaryot Cell ; 12(2): 343-55, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23264646

RESUMO

In yeast (Saccharomyces cerevisiae) and animals, the sulfhydryl oxidase Erv1 functions with Mia40 in the import and oxidative folding of numerous cysteine-rich proteins in the mitochondrial intermembrane space (IMS). Erv1 is also required for Fe-S cluster assembly in the cytosol, which uses at least one mitochondrially derived precursor. Here, we characterize an essential Erv1 orthologue from the protist Trypanosoma brucei (TbERV1), which naturally lacks a Mia40 homolog. We report kinetic parameters for physiologically relevant oxidants cytochrome c and O(2), unexpectedly find O(2) and cytochrome c are reduced simultaneously, and demonstrate that efficient reduction of O(2) by TbERV1 is not dependent upon a simple O(2) channel defined by conserved histidine and tyrosine residues. Massive mitochondrial swelling following TbERV1 RNA interference (RNAi) provides evidence that trypanosome Erv1 functions in IMS protein import despite the natural absence of the key player in the yeast and animal import pathways, Mia40. This suggests significant evolutionary divergence from a recently established paradigm in mitochondrial cell biology. Phylogenomic profiling of genes also points to a conserved role for TbERV1 in cytosolic Fe-S cluster assembly. Conversely, loss of genes implicated in precursor delivery for cytosolic Fe-S assembly in Entamoeba, Trichomonas, and Giardia suggests fundamental differences in intracellular trafficking pathways for activated iron or sulfur species in anaerobic versus aerobic eukaryotes.


Assuntos
Proteínas Mitocondriais/química , Oxirredutases/química , Proteínas de Protozoários/química , Trypanosoma brucei brucei/enzimologia , Substituição de Aminoácidos , Citocromos c/química , Evolução Molecular , Técnicas de Silenciamento de Genes , Cinética , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Dilatação Mitocondrial , Mutagênese Sítio-Dirigida , Oxidantes , Oxirredução , Oxirredutases/genética , Oxigênio/química , Filogenia , Dobramento de Proteína , Transporte Proteico , Proteínas de Protozoários/genética , Interferência de RNA , Trypanosoma brucei brucei/citologia
7.
Biochem J ; 448(2): 253-60, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22928879

RESUMO

Mitochondrial cytochromes c and c1 are core components of the respiratory chain of all oxygen-respiring eukaryotes. These proteins contain haem, covalently bound to the polypeptide in a catalysed post-translational modification. In all eukaryotes, except members of the protist phylum Euglenozoa, haem attachment is to the cysteine residues of a CxxCH haem-binding motif. In the Euglenozoa, which include medically relevant trypanosomatid parasites, haem attachment is to a single cysteine residue in an AxxCH haem-binding motif. Moreover, genes encoding known c-type cytochrome biogenesis machineries are all absent from trypanosomatid genomes, indicating the presence of a novel biosynthetic apparatus. In the present study, we investigate expression and maturation of cytochrome c with a typical CxxCH haem-binding motif in the trypanosomatids Crithidia fasciculata and Trypanosoma brucei. Haem became attached to both cysteine residues of the haem-binding motif, indicating that, in contrast with previous hypotheses, nothing prevents formation of a CxxCH cytochrome c in euglenozoan mitochondria. The cytochrome variant was also able to replace the function of wild-type cytochrome c in T. brucei. However, the haem attachment to protein was not via the stereospecifically conserved linkage universally observed in natural c-type cytochromes, suggesting that the trypanosome cytochrome c biogenesis machinery recognized and processed only the wild-type single-cysteine haem-binding motif. Moreover, the presence of the CxxCH cytochrome c resulted in a fitness cost in respiration. The level of cytochrome c biogenesis in trypanosomatids was also found to be limited, with the cells operating at close to maximum capacity.


Assuntos
Crithidia fasciculata/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Motivos de Aminoácidos , Sequência de Bases , Sítios de Ligação , Crithidia fasciculata/genética , Citocromos c/genética , Primers do DNA/genética , Transporte de Elétrons , Evolução Molecular , Heme/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Trypanosoma brucei brucei/genética
8.
J Biol Chem ; 287(4): 2342-52, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22121193

RESUMO

c-Type cytochromes are widespread proteins, fundamental for respiration or photosynthesis in most cells. They contain heme covalently bound to protein in a highly conserved, highly stereospecific post-translational modification. In many bacteria, mitochondria, and archaea this heme attachment is catalyzed by the cytochrome c maturation (Ccm) proteins. Here we identify and characterize a covalent, ternary complex between the heme chaperone CcmE, heme, and cytochrome c. Formation of the complex from holo-CcmE occurs in vivo and in vitro and involves the specific heme-binding residues of both CcmE and apocytochrome c. The enhancement and attenuation of the amounts of this complex correlates completely with known consequences of mutations in genes for other Ccm proteins. We propose the complex is a trapped catalytic intermediate in the cytochrome c biogenesis process, at the point of heme transfer from CcmE to the cytochrome, the key step in the maturation pathway.


Assuntos
Proteínas da Membrana Bacteriana Externa/biossíntese , Citocromos c/biossíntese , Proteínas de Escherichia coli/biossíntese , Escherichia coli/metabolismo , Heme/metabolismo , Hemeproteínas/biossíntese , Biossíntese de Proteínas/fisiologia , Proteínas da Membrana Bacteriana Externa/genética , Citocromos c/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Heme/genética , Hemeproteínas/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo
9.
FEBS J ; 278(22): 4198-216, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21736702

RESUMO

In c-type cytochromes, heme becomes covalently attached to the polypeptide chain by a reaction between the vinyl groups of the heme and cysteine thiols from the protein. There are two such cytochromes in mitochondria: cytochrome c and cytochrome c(1). The heme attachment is a post-translational modification that is catalysed by different biogenesis proteins in different organisms. Three types of biogenesis system are found or predicted in mitochondria: System I (the cytochrome c maturation system); System III (termed holocytochrome c synthase (HCCS) or heme lyase); and System V. This review focuses primarily on cytochrome c maturation in mitochondria containing HCCS (System III). It describes what is known about the enzymology and substrate specificity of HCCS; the role of HCCS in human disease; import of HCCS into mitochondria; import of apocytochromes c and c(1) into mitochondria and the close relationships with HCCS-dependent heme attachment; and the role of the fungal cytochrome c biogenesis accessory protein Cyc2. System V is also discussed; this is the postulated mitochondrial cytochrome c biogenesis system of trypanosomes and related organisms. No cytochrome c biogenesis proteins have been identified in the genomes of these organisms whose c-type cytochromes also have a unique mode of heme attachment.


Assuntos
Citocromos c/metabolismo , Liases/metabolismo , Mitocôndrias/metabolismo , Animais , Humanos , Especificidade por Substrato
10.
FEBS Lett ; 585(12): 1891-6, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21570394

RESUMO

The covalent attachment of heme to mitochondrial cytochrome c is catalysed by holocytochrome c synthase (HCCS, also called heme lyase). How HCCS functions and recognises the substrate apocytochrome is unknown. Here we have examined HCCS recognition of a chimeric substrate comprising a short mitochondrial cytochrome c N-terminal region with the C-terminal sequence, including the CXXCH heme-binding motif, of a bacterial cytochrome c that is not otherwise processed by HCCS. Heme attachment to the chimera demonstrates the importance of the N-terminal region of the cytochrome. A series of variants of a mitochondrial cytochrome c with amino acid replacements in the N-terminal region have narrowed down the specificity determinants, providing insight into HCCS substrate recognition.


Assuntos
Citocromos c/metabolismo , Liases/metabolismo , Proteínas Mitocondriais/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias , Sítios de Ligação , Citocromos c/química , Heme/metabolismo , Holoenzimas , Especificidade por Substrato
11.
Biochem J ; 435(1): 217-25, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21244362

RESUMO

Cytochrome cd1 nitrite reductase is a haem-containing enzyme responsible for the reduction of nitrite into NO, a key step in the anaerobic respiratory process of denitrification. The active site of cytochrome cd1 contains the unique d1 haem cofactor, from which NO must be released. In general, reduced haems bind NO tightly relative to oxidized haems. In the present paper, we present experimental evidence that the reduced d1 haem of cytochrome cd1 from Paracoccus pantotrophus releases NO rapidly (k=65-200 s(-1)); this result suggests that NO release is the rate-limiting step of the catalytic cycle (turnover number=72 s(-1)). We also demonstrate, using a complex of the d1 haem and apomyoglobin, that the rapid dissociation of NO is largely controlled by the d1 haem cofactor itself. We present a reaction mechanism proposed to be applicable to all cytochromes cd1 and conclude that the d1 haem has evolved to have low affinity for NO, as compared with other ferrous haems.


Assuntos
Proteínas de Bactérias/metabolismo , Citocromos/metabolismo , Heme/análogos & derivados , Óxido Nítrico/metabolismo , Nitrito Redutases/metabolismo , Paracoccus pantotrophus/enzimologia , Apoproteínas/metabolismo , Biocatálise , Desnitrificação , Heme/metabolismo , Cinética , Modelos Moleculares , Mioglobina/metabolismo , Oxirredução , Fotólise
12.
Protein Expr Purif ; 76(1): 79-82, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20937390

RESUMO

The cofactor heme (Fe-protoporphyrin IX) plays many important roles in biology. Identification of novel proteins for the transport, chaperoning and delivery of heme in cells is of widespread interest. Here, we describe the use of heme conjugated magnetic beads for the isolation of heme-binding proteins from complex protein mixtures. The reagent is straightforward to use, sensitive and specific.


Assuntos
Proteínas de Transporte/isolamento & purificação , Heme , Proteínas Periplásmicas/química , Apoproteínas/química , Cromatografia de Afinidade/métodos , Grupo dos Citocromos b/química , Proteínas de Escherichia coli/química , Magnetismo , Mioglobina/química
13.
J Biol Chem ; 285(30): 22882-9, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20466730

RESUMO

The Ccm cytochrome c maturation System I catalyzes covalent attachment of heme to apocytochromes c in many bacterial species and some mitochondria. A covalent, but transient, bond between heme and a conserved histidine in CcmE along with an interaction between CcmH and the apocytochrome have been previously indicated as core aspects of the Ccm system. Here, we show that in the Ccm system from Desulfovibrio desulfuricans, no CcmH is required, and the holo-CcmE covalent bond occurs via a cysteine residue. These observations call for reconsideration of the accepted models of System I-mediated c-type cytochrome biogenesis.


Assuntos
Proteínas de Bactérias/genética , Citocromos c/biossíntese , Desulfovibrio desulfuricans/genética , Desulfovibrio desulfuricans/metabolismo , Deleção de Genes , Heme/metabolismo , Histidina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Genoma Bacteriano/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Solubilidade
14.
J Am Chem Soc ; 132(14): 4974-5, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20329772

RESUMO

The system I cytochrome c maturation (Ccm) apparatus has been shown to handle a wide variety of apocytochrome substrates containing the CX(n)CH heme attachment sequence, where n = 2, 3, or 4 in natural sequences. When n = 5 or 6, the apparatus also appears to handle these substrates correctly, but close inspection reveals that the resulting mature cytochromes are mixtures of species containing extra mass. We have used accurate mass spectrometry to analyze peptide digests of matured Escherichia coli cytochrome cb(562) with n = 1, 5, or 6 and shown that an extra sulfur is sometimes incorporated into the heme-protein linkage. These unprecedented, aberrant persulfide linkages may shed new light upon the mechanism of the attachment of heme to substrate apocytochrome within the Ccm complex of E. coli.


Assuntos
Cisteína/análogos & derivados , Citocromos c/química , Dissulfetos/química , Proteínas de Escherichia coli/química , Heme/química , Cisteína/química , Cisteína/metabolismo , Citocromos c/metabolismo , Dissulfetos/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Heme/metabolismo , Modelos Moleculares
15.
FEBS J ; 277(3): 726-37, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20050916

RESUMO

c-Type cytochromes require specific post-translational protein systems, which vary in different organisms, for the characteristic covalent attachment of heme to the cytochrome polypeptide. Cytochrome c biogenesis System II, found in chloroplasts and many bacteria, comprises four subunits, two of which (ResB and ResC) are the minimal functional unit. The ycf5 gene from Helicobacter pylori encodes a fusion of ResB and ResC. Heterologous expression of ResBC in Escherichia coli lacking its own biogenesis machinery allowed us to investigate the substrate specificity of System II. ResBC is able to attach heme to monoheme c-type cytochromes c(550) from Paracoccus denitrificans and c(552) from Hydrogenobacter thermophilus, both normally matured by System I. The production of holocytochrome is enhanced by the addition of exogenous reductant. Single-cysteine variants of these cytochromes were not efficiently matured by System II, but System I was able to produce detectable amounts of AXXCH variants; this adds to evidence that there is no obligate requirement for a disulfide-bonded intermediate for the latter c-type cytochrome biogenesis system. In addition, System II was able to mature an AXXAH-containing variant into a b-type cytochrome, with implications for both heme supply to the periplasm and substrate recognition by System II.


Assuntos
Citocromos c/biossíntese , Metabolismo Energético , Complexos Multienzimáticos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Grupo dos Citocromos c/metabolismo , Citocromos c/genética , Proteínas de Escherichia coli/metabolismo , Helicobacter pylori/genética , Heme/metabolismo , Paracoccus denitrificans/enzimologia , Processamento de Proteína Pós-Traducional/fisiologia , Especificidade por Substrato
16.
J Biochem Mol Toxicol ; 23(6): 406-18, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20024957

RESUMO

We have previously observed that a chronic drinking water exposure to monomethylarsonous acid [MMA(III)], a cellular metabolite of inorganic arsenic, increases tumor frequency in the skin of keratin VI/ornithine decarboxylase (K6/ODC) transgenic mice. To characterize gene expression profiles predictive of MMA(III) exposure and mode of action of carcinogenesis, skin and papilloma RNA was isolated from K6/ODC mice administered 0, 10, 50, and 100 ppm MMA(III) in their drinking water for 26 weeks. Following RNA processing, the resulting cRNA samples were hybridized to Affymetrix Mouse Genome 430A 2.0 GeneChips(R). Micoarray data were normalized using MAS 5.0 software, and statistically significant genes were determined using a regularized t-test. Significant changes in bZIP transcription factors, MAP kinase signaling, chromatin remodeling, and lipid metabolism gene transcripts were observed following MMA(III) exposure as determined using the Database for Annotation, Visualization and Integrated Discovery 2.1 (DAVID) (Dennis et al., Genome Biol 2003;4(5):P3). MMA(III) also caused dose-dependent changes in multiple Rho guanine nucleotide triphosphatase (GTPase) and cell cycle related genes as determined by linear regression analyses. Observed increases in transcript abundance of Fosl1, Myc, and Rac1 oncogenes in mouse skin support previous reports on the inducibility of these oncogenes in response to arsenic and support the relevance of these genomic changes in skin tumor induction in the K6/ODC mouse model.


Assuntos
Perfilação da Expressão Gênica , Queratina-6/fisiologia , Oncogenes , Compostos Organometálicos/toxicidade , Ornitina Descarboxilase/fisiologia , Papiloma/induzido quimicamente , Neoplasias Cutâneas/induzido quimicamente , Pele/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Teorema de Bayes , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta a Droga , Feminino , Proteínas de Choque Térmico HSP90/genética , Modelos Lineares , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Papiloma/genética , Análise de Componente Principal , Neoplasias Cutâneas/genética , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
17.
Toxicology ; 266(1-3): 6-15, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-19822182

RESUMO

Exposure of male C3H mice in utero (from gestational days 8-18) to 85ppm sodium arsenite via the dams' drinking water has previously been shown to increase liver tumor incidence by 2 years of age. However, in our companion study (Ahlborn et al., 2009), continuous exposure to 85ppm sodium arsenic (from gestational day 8 to postnatal day 365) did not result in increased tumor incidence, but rather in a significant reduction (0% tumor incidence). The purpose of the present study was to examine the gene expression responses that may lead to the apparent protective effect of continuous arsenic exposure. Genes in many functional categories including cellular growth and proliferation, gene expression, cell death, oxidative stress, protein ubiquitination, and mitochondrial dysfunction were altered by continuous arsenic treatment. Many of these genes are known to be involved in liver cancer. One such gene associated with rodent hepatocarcinogenesis, Scd1, encodes stearoyl-CoA desaturase and was down-regulated by continuous arsenic treatment. An overlap between the genes in our study affected by continuous arsenic exposure and those from the literature affected by long-term caloric restriction suggests that reduction in the spontaneous tumor incidence under both conditions may involve similar gene pathways such as fatty acid metabolism, apoptosis, and stress response.


Assuntos
Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas Experimentais/genética , Transcrição Gênica , Fatores Etários , Envelhecimento/genética , Animais , Arsenitos/administração & dosagem , Transformação Celular Neoplásica/induzido quimicamente , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Idade Gestacional , Neoplasias Hepáticas Experimentais/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C3H , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Compostos de Sódio/administração & dosagem
18.
New Phytol ; 184(2): 399-411, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19659660

RESUMO

* Here, nitrogen (N) uptake and metabolism, and related gene expression, were analyzed in germinating spores of Glomus intraradices to examine the mechanisms and the regulation of N handling during presymbiotic growth. * The uptake and incorporation of organic and inorganic N sources into free amino acids were analyzed using stable and radioactive isotope labeling followed by high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS) and liquid scintillation counting and the fungal gene expression was measured by quantitative polymerase chain reaction (Q-PCR). * Quiescent spores store Asp, Ala and Arg and can use these internal N resources during germination. Although not required for presymbiotic growth, exogenous N can also be utilized for the de novo biosynthesis of amino acids. Ammonium and urea are more rapidly assimilated than nitrate and amino acids. Root exudates do not stimulate the uptake and utilization of exogenous ammonium, but the expression of genes encoding a putative glutamate dehydrogenase (GDH), a urease accessory protein (UAP) and an ornithine aminotransferase (OAT) were stimulated by root exudates. The transcript levels of an ammonium transporter (AMT) and a glutamine synthetase (GS) were not affected. * Germinating spores can make effective use of different N sources and the ability to synthesize amino acids does not limit presymbiotic growth of arbuscular mycorrhizal (AM) spores.


Assuntos
Aminoácidos/biossíntese , Genes Fúngicos , Glomeromycota/metabolismo , Micorrizas/metabolismo , Nitrogênio/metabolismo , Esporos Fúngicos/metabolismo , Transporte Biológico , Cromatografia Gasosa-Espectrometria de Massas , Regulação Fúngica da Expressão Gênica , Glomeromycota/genética , Glomeromycota/crescimento & desenvolvimento , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Micorrizas/crescimento & desenvolvimento , Nitratos/metabolismo , Ornitina-Oxo-Ácido Transaminase/genética , Ornitina-Oxo-Ácido Transaminase/metabolismo , Exsudatos de Plantas/fisiologia , Raízes de Plantas , Compostos de Amônio Quaternário/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Ureia/metabolismo
19.
Toxicology ; 262(2): 106-13, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19450653

RESUMO

Epidemiological studies suggest that chronic exposure to inorganic arsenic is associated with cancer of the skin, urinary bladder and lung as well as the kidney and liver. Previous experimental studies have demonstrated increased incidence of liver, lung, ovary, and uterine tumors in mice exposed to 85 ppm (approximately 8 mg/kg) inorganic arsenic during gestation. To further characterize age susceptibility to arsenic carcinogenesis we administered 85 ppm inorganic arsenic in drinking water to C3H mice during gestation, prior to pubescence and post-pubescence to compare proliferative lesion and tumor outcomes over a one-year exposure period. Inorganic arsenic significantly increased the incidence of hyperplasia in urinary bladder (48%) and oviduct (36%) in female mice exposed prior to pubescence (beginning on postnatal day 21 and extending through one year) compared to control mice (19 and 5%, respectively). Arsenic also increased the incidence of hyperplasia in urinary bladder (28%) of female mice continuously exposed to arsenic (beginning on gestation day 8 and extending though one year) compared to gestation only exposed mice (0%). In contrast, inorganic arsenic significantly decreased the incidence of tumors in liver (0%) and adrenal glands (0%) of male mice continuously exposed from gestation through one year, as compared to levels in control (30 and 65%, respectively) and gestation only (33 and 55%, respectively) exposed mice. Together, these results suggest that continuous inorganic arsenic exposure at 85 ppm from gestation through one year increases the incidence and severity of urogenital proliferative lesions in female mice and decreases the incidence of liver and adrenal tumors in male mice. The paradoxical nature of these effects may be related to altered lipid metabolism, the effective dose in each target organ, and/or the shorter one-year observational period.


Assuntos
Neoplasias das Glândulas Suprarrenais/induzido quimicamente , Arsenitos/toxicidade , Carcinógenos/toxicidade , Neoplasias Hepáticas/induzido quimicamente , Oviductos/efeitos dos fármacos , Compostos de Sódio/toxicidade , Bexiga Urinária/efeitos dos fármacos , Administração Oral , Neoplasias das Glândulas Suprarrenais/patologia , Animais , Esquema de Medicação , Feminino , Hiperplasia/induzido quimicamente , Neoplasias Hepáticas/patologia , Masculino , Exposição Materna , Troca Materno-Fetal , Camundongos , Camundongos Endogâmicos C3H , Oviductos/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Fatores de Tempo , Bexiga Urinária/patologia , Abastecimento de Água
20.
Food Chem Toxicol ; 47(6): 1154-60, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19425233

RESUMO

Bromate, a common disinfectant byproduct of drinking water ozonation, has been linked to human and animal renal toxicity, including renal cell carcinomas in multiple animal species. Here, we evaluate changes in protein and gene expression through two-dimensional difference gel electrophoresis (2D-DIGE) and Affymetrix arrays to identify potential modes of action involved in potassium bromate carcinogenicity. Male rats were exposed to potassium bromate in drinking water at concentrations of 0, 1, 20 and 400 ppm for two weeks. Differential expression of glycolytic proteins including enolase 1 (Eno1), triosephosphate isomerase 1 (Tpi1) and glyceraldehyde-3-phosphate dehydrogenase (Gapdh) suggests that bromate toxicity is associated with changes in energy consumption and utilization in renal cells involving up-regulation of glycolytic processes that may be the result of altered mitochondrial function. Several alterations in glycolysis and mitochondrial gene transcripts were also observed to be consistent with this mode of action. These studies provide insight into early events in renal cell physiology altered by bromate exposure.


Assuntos
Bromatos/toxicidade , Expressão Gênica/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Proteínas/metabolismo , Animais , Linhagem Celular , Desinfecção , Eletroforese em Gel Bidimensional , Metabolismo Energético/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Rim/citologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Endogâmicos F344 , Espectrometria de Massas em Tandem , Tripsina/química , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA