Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0306450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39083508

RESUMO

Metastasis remains the leading cause of cancer deaths worldwide and lung cancer, known for its highly metastatic progression, remains among the most lethal of malignancies. Lung cancer metastasis can selectively spread to multiple different organs, however the genetic and molecular drivers for this process are still poorly understood. Understanding the heterogeneous genomic profile of lung cancer metastases is considered key in identifying therapeutic targets that prevent its spread. Research has identified the key source for metastasis being clusters of cells rather than individual cancer cells. These clusters, known as metastatic cancer cell clusters (MCCCs) have been shown to be 100-fold more tumorigenic than individual cancer cells. Unfortunately, access to these primary drivers of metastases remains difficult and has limited our understanding of their molecular and genomic profiles. Strong evidence in the literature suggests that differentially regulated biological pathways in MCCCs can provide new therapeutic drug targets to help combat cancer metastases. In order to expand research into MCCCs and their role in metastasis, we demonstrate a novel, proof of principle technology, to capture MCCCs directly from patients' whole blood. Our platform can be readily tuned for different solid tumor types by combining a biomimicry-based margination effect coupled with immunoaffinity to isolate MCCCs. Adopting a selective capture approach based on overexpressed CD44 in MCCCs provides a methodology that preferentially isolates them from whole blood. Furthermore, we demonstrate a high capture efficiency of more than 90% when spiking MCCC-like model cell clusters into whole blood. Characterization of the captured MCCCs from lung cancer patients by immunofluorescence staining and genomic analyses, suggests highly differential morphologies and genomic profiles. This study lays the foundation to identify potential drug targets thus unlocking a new area of anti-metastatic therapeutics.


Assuntos
Neoplasias Pulmonares , Metástase Neoplásica , Células Neoplásicas Circulantes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Estudo de Prova de Conceito , Genômica , Feminino , Masculino
2.
Curr Opin Neurol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38873801

RESUMO

PURPOSE OF REVIEW: There is no diagnostic biomarker that can reliably detect Guillain-Barré syndrome (GBS) or chronic inflammatory demyelinating polyneuropathy (CIDP). Diagnosis relies upon integrating key clinical characteristics and relevant supportive data. Consequently, misdiagnosis and delayed diagnosis are common. Diagnostic criteria have proven valuable resources to improve diagnosis, but are underutilized during routine clinical care. RECENT FINDINGS: In 2021, the EAN/PNS CIDP criteria was published, and were followed by the EAN/PNS GBS criteria in 2023. Both guidelines utilized GRADE methodology to formulate evidence-based recommendations that are intended to be used by adult and paediatric clinicians across diverse care settings to optimize diagnostic accuracy and improve patient outcomes during routine clinical care. SUMMARY: The EAN/PNS GBS and CIDP criteria detail specific clinical, electrophysiological, and laboratory features that raise diagnostic confidence, and call attention to diagnostic mimics. The sensitivity of EAN/PNS and other modern criteria to detect GBS and CIDP is high, but utilization during clinical practice is low. Complexity is one factor limiting widespread application. Strategies are needed to optimize criteria adoption during routine clinical care such that GBS and CIDP diagnosis can be achieved with greater speed and accuracy.

3.
Neurooncol Pract ; 11(2): 188-198, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38496907

RESUMO

Background: Patients with relapsed intracranial germinoma can achieve durable remission with standard chemotherapy regimens and/or reirradiation; however, innovative therapies are required for patients with relapsed and/or refractory intracranial nongerminomatous germ cell tumors (NGGCTs) due to their poor prognosis. Improved outcomes have been reported using reinduction chemotherapy to achieve minimal residual disease, followed by marrow-ablative chemotherapy (HDCx) with autologous hematopoietic progenitor cell rescue (AuHPCR). We conducted a phase II trial evaluating the response and toxicity of a 3-drug combination developed for recurrent intracranial germ cell tumors consisting of gemcitabine, paclitaxel, and oxaliplatin (GemPOx). Methods: A total of 9 patients with confirmed relapsed or refractory intracranial GCT were enrolled after signing informed consent, and received at least 2 cycles of GemPOx, of which all but 1 had relapsed or refractory NGGCTs. One patient with progressive disease was found to have pathologically confirmed malignant transformation to pure embryonal rhabdomyosarcoma (without GCT elements), hence was ineligible and not included in the analysis. Patients who experienced sufficient responses proceeded to receive HDCx with AuHPCR. Treatment response was determined based on radiographic tumor assessments and tumor markers. Results: A total of 7 patients achieved sufficient response and proceeded with HDCx and AuHPCR, and 5 subsequently received additional radiotherapy. A total of 2 patients developed progressive disease while receiving GemPOx. Myelosuppression and transaminitis were the most common treatment-related adverse events. With a mean follow-up of 44 months, 4 patients (3 NGGCTs, 1 germinoma) are alive without evidence of disease. Conclusions: GemPOx demonstrates efficacy in facilitating stem cell mobilization, thus facilitating the feasibility of both HDCx and radiotherapy.

4.
J Mol Diagn ; 26(4): 233-244, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38307253

RESUMO

Chimerism testing supports the study of engraftment and measurable residual disease (MRD) in patients after allogeneic hematopoietic stem cell transplant. In chimerism MRD, relapse can be predicted by increasing mixed chimerism (IMC), recipient increase ≥0.1% in peripheral blood, and proliferating recipient cells as a surrogate of tumor activity. Conventionally, the combination of short-tandem repeat (STR) and quantitative PCR (qPCR) was needed to ensure assay sensitivity and accuracy in all chimerism status. We evaluated the use of next-generation sequencing (NGS) as an alternate technique. The median numbers of informative markers in unrelated/related cases were 124/82 (NGS; from 202 single-nucleotide polymorphism), 5/3 (qPCR), and 17/10 (STR). Assay sensitivity was 0.22% (NGS), 0.1% (qPCR), and 1% (STR). NGS batch (4 to 48 samples) required 19.60 to 24.80 hours and 1.52 to 2.42 hours of hands-on time (comparable to STR/qPCR). NGS assay cost/sample was $91 to $151, similar to qPCR ($99) but higher than STR ($27). Using 56 serial DNAs from six post-transplant patients monitored by the qPCR/STR, the correlation with NGS was strong for percentage recipient (y = 1.102x + 0.010; R2 = 0.968) and percentage recipient change (y = 0.892x + 0.041; R2 = 0.945). NGS identified all 17 IMC events detected by qPCR (100% sensitivity). The NGS chimerism provides sufficient sensitivity, accuracy, and economical/logistical feasibility in supporting engraftment and MRD monitoring.


Assuntos
Quimerismo , Transplante de Células-Tronco Hematopoéticas , Humanos , Recidiva Local de Neoplasia , Repetições de Microssatélites , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Reação em Cadeia da Polimerase/métodos , Sequenciamento de Nucleotídeos em Larga Escala
5.
Neuro Oncol ; 26(Supplement_2): S155-S164, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38400780

RESUMO

BACKGROUND: This study evaluated the safety and pharmacokinetics (PK) of oral ONC201 administered twice-weekly on consecutive days (D1D2) in pediatric patients with newly diagnosed DIPG and/or recurrent/refractory H3 K27M glioma. METHODS: This phase 1 dose-escalation and expansion study included pediatric patients with H3 K27M-mutant glioma and/or DIPG following ≥1 line of therapy (NCT03416530). ONC201 was administered D1D2 at 3 dose levels (DLs; -1, 1, and 2). The actual administered dose within DLs was dependent on weight. Safety was assessed in all DLs; PK analysis was conducted in DL2. Patients receiving once-weekly ONC201 (D1) served as a PK comparator. RESULTS: Twelve patients received D1D2 ONC201 (DL1, n = 3; DL1, n = 3; DL2, n = 6); no dose-limiting toxicities or grade ≥3 treatment-related adverse events occurred. PK analyses at DL2 (D1-250 mg, n = 3; D1-625 mg, n = 3; D1D2-250 mg, n = 2; D1D2-625 mg, n = 2) demonstrated variability in Cmax, AUC0-24, and AUC0-48, with comparable exposures across weight groups. No accumulation occurred with D1D2 dosing; the majority of ONC201 cleared before administration of the second dose. Cmax was variable between groups but did not appear to increase with D1D2 dosing. AUC0-48 was greater with D1D2 than once-weekly. CONCLUSIONS: ONC201 given D1D2 was well tolerated at all DLs and associated with greater AUC0-48.


Assuntos
Neoplasias Encefálicas , Glioma , Mutação , Humanos , Masculino , Feminino , Criança , Adolescente , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Pré-Escolar , Histonas , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Pirimidinas/farmacocinética , Pirimidinas/administração & dosagem , Pirimidinas/efeitos adversos , Esquema de Medicação , Dose Máxima Tolerável , Relação Dose-Resposta a Droga , Prognóstico , Seguimentos
6.
Plant Physiol ; 195(2): 1229-1255, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38366651

RESUMO

Trees with weeping shoot architectures are valued for their beauty and are a resource for understanding how plants regulate posture control. The peach (Prunus persica) weeping phenotype, which has elliptical downward arching branches, is caused by a homozygous mutation in the WEEP gene. Little is known about the function of WEEP despite its high conservation throughout Plantae. Here, we present the results of anatomical, biochemical, biomechanical, physiological, and molecular experiments that provide insight into WEEP function. Our data suggest that weeping peach trees do not have defects in branch structure. Rather, transcriptomes from the adaxial (upper) and abaxial (lower) sides of standard and weeping branch shoot tips revealed flipped expression patterns for genes associated with early auxin response, tissue patterning, cell elongation, and tension wood development. This suggests that WEEP promotes polar auxin transport toward the lower side during shoot gravitropic response, leading to cell elongation and tension wood development. In addition, weeping peach trees exhibited steeper root systems and faster lateral root gravitropic response. This suggests that WEEP moderates root gravitropism and is essential to establishing the set-point angle of lateral roots from the gravity vector. Additionally, size exclusion chromatography indicated that WEEP proteins self-oligomerize, like other proteins with sterile alpha motif domains. Collectively, our results from weeping peach provide insight into polar auxin transport mechanisms associated with gravitropism and lateral shoot and root orientation.


Assuntos
Gravitropismo , Ácidos Indolacéticos , Proteínas de Plantas , Prunus persica , Ácidos Indolacéticos/metabolismo , Gravitropismo/fisiologia , Gravitropismo/genética , Prunus persica/genética , Prunus persica/fisiologia , Prunus persica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Gravitação , Árvores/fisiologia , Árvores/genética
7.
Mayo Clin Proc Innov Qual Outcomes ; 8(1): 74-81, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38283096

RESUMO

Multifocal motor neuropathy (MMN) is a rare immune-mediated motor neuropathy characterized by asymmetric weakness that preferentially affects distal upper limb muscles. The clinical features of MMN may be difficult to differentiate from motor neuron disease. Other conditions that may be mistaken for MMN include inclusion body myositis, chronic inflammatory demyelinating polyradiculoneuropathy, hereditary neuropathy with liability to pressure palsy, focal neuropathies, and radiculopathies. A key distinguishing electrophysiologic feature of MMN is the motor nerve conduction block located at noncompressible sites. MMN is a treatable neuropathy; therefore it is important that primary care physicians are aware of the features of the disease to identify potential patients and make referrals to a neuromuscular specialist in a timely manner. This review provides an overview of the disease, highlights key differential diagnoses, and describes available treatment options for patients with MMN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA