RESUMO
The opioid epidemic is an evolving health crisis in need of interventions that target all domains of maladaptive changes due to chronic use and abuse. Opioids are known for their effects on the opioid and dopaminergic systems, in addition to neurocircuitry changes that mediate changes in behavior; however, new research lines are looking at complementary changes in the brain and gut. The gut-brain axis (GBA) is a bidirectional signaling process that permits feedback between the brain and gut and is altered in subjects with opioid use disorders. In this work, we determine longitudinal, non-invasive, and in-vivo complementary changes in the brain and gut in rodents trained to self-administer morphine for two weeks using MRI and 16S rDNA analysis of fecal matter. We assess the changes occurring during both an acute phase (early in the self-administration process, after two days of self-administration) and a chronic phase (late in the self-administration process, after two weeks of self-administration), with all measurements benchmarked against baseline (naïve, non-drug state). Rats were surgically implanted with an intravenous jugular catheter for self-administration of morphine. Rats were allowed to choose between an active lever, which delivers a single infusion of morphine (0.4 mg/kg/infusion), or an inactive lever, which had no consequence upon pressing. Animals were scanned in a 7T MRI scanner three times (baseline, acute, and chronic), and before scanning, fecal matter was collected from each rat. After the last scan session, a subset of animals was euthanized, and brains were preserved for immunohistochemistry analysis. We found early changes in gut microbiota diversity and specific abundance as early as the acute phase that persisted into the chronic phase. In MRI, we identified alterations in diffusivity indices both within subjects and between groups, showing a main effect in the striatum, thalamus, and somatosensory cortex. Finally, immunohistochemistry analyses revealed increased neuroinflammatory markers in the thalamus of rats exposed to morphine. Overall, we demonstrate that morphine self-administration shapes the brain and gut microbiota. In conclusion, gut changes precede the anatomical effects observed in MRI features, with neuroinflammation emerging as a crucial link mediating communication between the gut and the brain. This highlights neuroinflammation as a potential target in addressing the impacts of opioid use.
RESUMO
Maternal separation with early weaning (MSEW) is a popular early life stress (ELS) model in rodents, which emulates childhood neglect through scheduled mother-offspring separation. Although variations of ELS models, including maternal separation and MSEW, have been published for the mouse species, the reported results are inconsistent. Corticosterone is considered the main stress hormone involved in regulating stress responses in rodents-yet generating a robust and reproducible corticosterone response in mouse models of ELS has been elusive. Considering the current lack of standardization for MSEW protocols, these inconsistent results may be attributed to variations in model methodologies. Here, we compared the effects of select early wean diet sources-which are the non-milk diets used to complete early weaning in MSEW pups-on the immediate stress phenotype of C57BL/6J mice at postnatal day 21. Non-aversive handling was an integral component of our modified MSEW model. The evaluation of body weight and serum corticosterone revealed the early wean diet to be a key variable in the resulting stress phenotype. Interestingly, select non-milk diets facilitated a stress phenotype in which low body weight was accompanied by significant corticosterone elevation. Our data indicate that dietary considerations are critical in MSEW-based studies and provide insight into improving the reproducibility of key stress-associated outcomes as a function of this widely used ELS paradigm.
RESUMO
Borrelia burgdorferi, the spirochetal agent of Lyme disease, utilizes a variety of strategies to evade and suppress the host immune response, which enables it to chronically persist in the host. The resulting immune response is characterized by unusually strong IgM production and a lack of long-term protective immunity. Previous studies in mice have shown that infection with B. burgdorferi also broadly suppresses host antibody responses against unrelated antigens. Here, we show that mice infected with B. burgdorferi and concomitantly immunized with recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein had an abrogated antibody response to the immunization. To further define how long this humoral immune suppression lasts, mice were immunized at 2, 4, and 6 weeks post-infection. Suppression of host antibody production against the SARS-CoV-2 spike protein peaked at 2 weeks post-infection but continued for all timepoints measured. Antibody responses against the SARS-CoV-2 spike protein were also assessed following antibiotic treatment to determine whether this immune suppression persists or resolves following clearance of B. burgdorferi. Host antibody production against the SARS-CoV-2 spike protein returned to baseline following antibiotic treatment; however, anti-SARS-CoV-2 IgM remained high, comparable to levels found in B. burgdorferi-infected but untreated mice. Thus, our data demonstrate restored IgG responses following antibiotic treatment but persistently elevated IgM levels, indicating lingering effects of B. burgdorferi infection on the immune system following treatment.
Assuntos
Borrelia burgdorferi , Doença de Lyme , Glicoproteína da Espícula de Coronavírus , Camundongos , Humanos , Animais , Imunidade Humoral , Imunoglobulina M , Antibacterianos , Anticorpos AntibacterianosRESUMO
The effects of synthetic, free-amino acid diets, similar to those prescribed as supplements for (phenylketonuria) PKU patients, on gut microbiota and overall health are not well understood. In the current, multidisciplinary study, we examined the effects of a synthetically-derived, low-fiber, amino acid diet on behavior, cognition, gut microbiome composition, and inflammatory markers. A cohort of 20 male C57BL/6J mice were randomly assigned to either a standard or synthetic diet (n = 10) at post-natal day 21 and maintained for 13 weeks. Sequencing of the 16S rRNA gene from fecal samples revealed decreased bacterial diversity, increased abundance of bacteria associated with disease, such as Prevotella, and a downward shift in gut microbiota associated with fermentation pathways in the synthetic diet group. Furthermore, there were decreased levels of short chain fatty acids and shortening of the colon in mice consuming the synthetic diet. Finally, we measured TNF-α, IL-6, and IL-10 in serum, the hippocampus, and colon, and found that the synthetic diet significantly increased IL-6 production in the hippocampus. These results demonstrate the importance of a multidisciplinary approach to future diet and microbiome studies, as diet not only impacts the gut microbiome composition but potentially systemic health as well.
RESUMO
Energy intake and partitioning are determined by many interacting factors and their prediction is the Achilles' heel of ration formulation. Inadequate energy intake can limit milk yield and reproductive performance, whereas excessive energy intake will increase body condition, increasing the risk of health and reproductive issues in the subsequent lactation. Ration composition interacts with the physiological state of cows, making it difficult to predict DMI and the partitioning of energy accurately. However, understanding the factors controlling these allows us to devise grouping strategies and manipulate rations to optimize energy intake through lactation. Eating is controlled by the integration of signals in brain feeding centers. Ration composition affects DMI of cows via signals from ruminal distention and the hepatic oxidation of fuels. Dairy cow rations must contain a minimal concentration of relatively low-energy roughages for proper rumen function, but signals from ruminal distension can limit DMI when the drive to eat is high. Signals from the hepatic oxidation of fuels likely dominate the control of DMI in the peripartum period when cows are in a lipolytic state and later in lactation when signals from distension diminish. Therefore, the effects of the ration on DMI vary with the physiological state of the animal. Furthermore, they interact with environmental stressors such as social (e.g., overcrowding) and thermal stress. The objective of this article is to discuss the effects of ration composition on energy intake and partitioning in lactating cows and how they can be manipulated to optimize productive performance.
Assuntos
Dieta , Lactação , Feminino , Bovinos , Animais , Lactação/fisiologia , Dieta/veterinária , Ingestão de Energia , Leite , Fibras na Dieta/farmacologia , Rúmen/fisiologia , Ração Animal/análiseRESUMO
Background: Post-mortem microbial communities are increasingly investigated as proxy evidence for a variety of factors of interest in forensic science. The reported predictive power of the microbial community to determine aspects of the individual's post-mortem history (e.g., the post-mortem interval) varies substantially among published research. This observed variation is partially driven by the local environment or the individual themselves. In the current study, we investigated the impact of BMI, sex, insect activity, season, repeat sampling, decomposition time, and temperature on the microbial community sampled from donated human remains in San Marcos, TX using a high-throughput gene-fragment metabarcoding approach. Materials and methods: In the current study, we investigated the impact of BMI, sex, insect activity, season, repeat sampling, decomposition time, and temperature on the microbial community sampled from donated human remains in San Marcos, TX using a high-throughput gene-fragment metabarcoding approach. Results: We found that season, temperature at the sampling site, BMI, and sex had a significant effect on the post-mortem microbiome, the presence of insects has a homogenizing influence on the total bacterial community, and that community consistency from repeat sampling decreases as the decomposition process progresses. Moreover, we demonstrate the importance of temperature at the site of sampling on the abundance of important diagnostic taxa. Conclusion: The results of this study suggest that while the bacterial community or specific bacterial species may prove to be useful for forensic applications, a clearer understanding of the mechanisms underpinning microbial decomposition will greatly increase the utility of microbial evidence in forensic casework.
RESUMO
Extreme weather events can temporarily alter the structure of coastal systems and generate floodwaters that are contaminated with fecal indicator bacteria (FIB); however, every coastal system is unique, so identification of trends and commonalities in these episodic events is challenging. To improve our understanding of the resilience of coastal systems to the disturbance of extreme weather events, we monitored water quality, FIB at three stations within Clear Lake, an estuary between Houston and Galveston, and three stations in bayous that feed into the estuary. Water samples were collected immediately before and after Hurricane Harvey (HH) and then throughout the fall of 2017. FIB levels were monitored by culturing E. coli and Enterococci. Microbial community structure was profiled by high throughput sequencing of PCR-amplified 16S rRNA gene fragments. Water quality and FIB data were also compared to historical data for these water body segments. Before HH, salinity within Clear Lake ranged from 9 to 11 practical salinity units (PSU). Immediately after the storm, salinity dropped to < 1 PSU and then gradually increased to historical levels over 2 months. Dissolved inorganic nutrient levels were also relatively low immediately after HH and returned, within a couple of months, to historical levels. FIB levels were elevated immediately after the storm; however, after 1 week, E. coli levels had decreased to what would be acceptable levels for freshwater. Enterococci levels collected several weeks after the storm were within the range of historical levels. Microbial community structure shifted from a system dominated by Cyanobacteria sp. before HH to a system dominated by Proteobacteria and Bacteroidetes immediately after. Several sequences observed only in floodwater showed similarity to sequences previously reported for samples collected following Hurricane Irene. These changes in beta diversity corresponded to salinity and nitrate/nitrite concentrations. Differential abundance analysis of metabolic pathways, predicted from 16S sequences, suggested that pathways associated with virulence and antibiotic resistance were elevated in floodwater. Overall, these results suggest that floodwater generated from these extreme events may have high levels of fecal contamination, antibiotic resistant bacteria and bacteria rarely observed in other systems.
RESUMO
Our objective was to evaluate effects of corn grain endosperm type and fineness of grind on feed intake, feeding behavior, and productive performance of lactating cows. Eight ruminally and duodenally cannulated Holstein cows in mid lactation (130 ± 42 d in milk; mean ± standard deviation) were used in a duplicated 4 × 4 Latin square design with 21-d periods. A 2 × 2 factorial arrangement of treatments was used with main effects of corn grain endosperm type (floury or vitreous) and fineness of grind (fine or medium). Rations included alfalfa silage, corn treatments, protein supplement, minerals, and vitamins and were formulated to contain 29% starch, 27% neutral detergent fiber, 18.2% forage neutral detergent fiber, and 18% crude protein. Corn grain treatments supplied 86.2% of dietary starch. Endosperm was 25% vitreous for the floury treatment and 66% vitreous for the vitreous treatment. The floury treatment increased rate of starch degradation by 94% (19.2 vs. 9.9%/h) and decreased rate of starch passage by 38% (16.1 vs. 25.8%/h), increasing apparent ruminal starch digestibility by 117% (53.7 vs. 24.7%). The floury treatment increased total-tract starch digestibility by 8% (92.2 vs. 85.1%) despite 37% lower postruminal starch digestion for the floury treatment compared with vitreous corn (38.4 vs. 60.7% of starch intake). Fine grind size increased apparent ruminal starch digestibility by 52% (47.2 vs. 31.1%) compared with medium grind size by increasing the rate of starch degradation by 105% (19.5 vs. 9.5%/h) with no effect on rate of starch passage. However, total-tract starch digestibility was not affected by fineness of grind because postruminal starch digestibility was 37% greater for medium compared with fine grind size (57.2 vs. 41.9% of starch intake). Endosperm type did not affect flow of nitrogen (N) fractions to the duodenum or microbial N efficiency, whereas fine grind size increased duodenal flow of nonammonia N by increasing duodenal flow of microbial N by 22% compared with medium grind size (438 vs. 359 g/d) but did not affect apparent total-tract N digestibility. No interactions were detected for any measure of starch digestion, ruminal N metabolism, or flow of N fractions to the duodenum. Endosperm type greatly affected ruminal and total-tract starch digestibility independent of the fineness of grind of corn grain with no effects on flow of N fractions.
Assuntos
Lactação , Zea mays , Animais , Bovinos , Digestão , Duodeno/metabolismo , Endosperma , Feminino , Fermentação , Cinética , Leite , Nitrogênio/metabolismo , Rúmen/metabolismoRESUMO
Our objective was to evaluate the relative effects of endosperm type and conservation method of corn grain on ruminal kinetics, site of nutrient digestion, and flow of nitrogen fractions to the duodenum in lactating dairy cows. Seven ruminally and duodenally cannulated Holstein cows (73 ± 39 d in milk; mean ± SD) were used in a duplicated 4 × 4 Latin square design with 21-d periods. A 2 × 2 factorial arrangement of treatments was used, with main effects of corn grain endosperm type (floury or vitreous) and conserved as dry ground corn (DGC) or high-moisture corn (HMC). Rations were formulated to contain 27.0% starch, 26.6% neutral detergent fiber (NDF), 19.1% forage NDF, and 16.5% crude protein. Corn grain treatments supplied 86.6% of dietary starch, and alfalfa silage was the sole forage. True ruminal starch digestibility was increased by HMC compared with DGC (87.2 vs. 64.3%) and by floury compared with vitreous corn grain (83.7 vs. 67.7%). The increase for HMC compared with DGC was because of an increase in the degradation rate (33.8 vs. 23.1%/h) and a decrease in passage rate of starch (7.6 vs. 15.2%/h). The increase for floury compared with vitreous corn grain was because of an increase in the degradation rate (31.5 vs. 25.4%/h) and a decrease in rate of starch passage from the rumen (7.9 vs. 14.9%/h). Apparent total-tract starch digestibility was increased by HMC compared with DGC and by floury compared with vitreous corn, but the increase for floury corn was greater for the DGC treatment. Dry ground corn compared with HMC tended to increase nonammonia N flow to the duodenum (466 vs. 431 g/d) by increasing flow of nonammonia nonmicrobial N (211 vs. 111 g/d) despite a decrease in microbial N flow (255 vs. 320 g/d). Vitreous corn increased nonammonia nonmicrobial N flow to the duodenum (187 vs. 135 g/d) compared with floury corn, but microbial N flow to the duodenum was not affected by endosperm type. Efficiency of microbial N production was not affected by treatment. Endosperm type and conservation method of corn grain greatly affect digestion kinetics and ruminal digestibility of starch as well as flow of N fractions to the duodenum and should be considered during diet formulation for lactating cows.
Assuntos
Rúmen , Zea mays , Animais , Bovinos , Digestão , Duodeno/metabolismo , Endosperma , Feminino , Fermentação , Cinética , Lactação , Leite , Nitrogênio/metabolismo , Distribuição Aleatória , Rúmen/metabolismoRESUMO
Our objective was to evaluate effects of corn grain endosperm type and fineness of grind on feed intake, feeding behavior, ruminal fermentation, and productive performance of lactating cows. Eight ruminally and duodenally cannulated Holstein cows in mid lactation (130 ± 42 d in milk; mean ± standard deviation) were used in a duplicated 4 × 4 Latin square design with 21-d periods. A 2 × 2 factorial arrangement of treatments was used with main effects of corn grain endosperm type (floury or vitreous) and fineness of grind of corn grain (fine or medium). Rations were formulated to contain 29% starch, 27% neutral detergent fiber, 18.2% forage neutral detergent fiber, and 18% crude protein. Corn grain treatments supplied 86.2% of dietary starch. Endosperm was 25% vitreous for floury corn and 66% vitreous for vitreous corn. Fineness of grind did not affect dry matter intake (DMI), but floury corn tended to reduce DMI (23.8 vs. 25.1 kg/d) compared with vitreous corn. Floury corn increased meal frequency more for fine grind size (9.57 vs. 9.41 meals/d) than medium grind size (9.78 vs. 9.75 meals/d). However, there were no effects of treatment on any other measure of feeding behavior. Endosperm type did not affect yields of milk or milk components or milk composition except that vitreous corn tended to decrease milk lactose concentration compared with floury corn. Finely ground corn decreased yields of milk (31.1 vs. 33.1 kg/d), 3.5% fat-corrected milk (33.1 vs. 35.1 kg/d), milk fat (1.22 vs. 1.32 kg/d), milk lactose (1.48 vs. 1.59 kg/d), and solids not fat (2.46 vs. 2.63 kg/d) compared with medium grind size. However, fineness of grind did not affect milk composition. Treatments had no effect on change in body weight or body condition score or efficiency of milk production (kg of 3.5% fat-corrected milk/kg of DMI). Mean ruminal pH was not affected by treatment, but pH variance was decreased by vitreous compared with floury corn. Total volatile fatty acids and propionate concentrations in the rumen were increased by floury compared with vitreous corn but were not affected by fineness of grind. Effects of fineness of grind on yield of milk and milk components were greater than the effects of corn grain vitreousness.
Assuntos
Lactação , Zea mays , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Ingestão de Alimentos , Endosperma , Comportamento Alimentar , Feminino , Fermentação , Leite , Rúmen/metabolismo , Silagem/análiseRESUMO
Our objective was to evaluate the effects of corn grain varying in endosperm type and conserved as high-moisture or dry ground corn on dry matter intake (DMI), feeding behavior, ruminal fermentation, and yields of milk and milk components of cows in early to mid-lactation. Seven ruminally and duodenally cannulated Holstein cows (73 ± 39 d in milk; mean ± SD) were used in a duplicated 4 × 4 Latin square design with 21-d periods. A 2 × 2 factorial arrangement of treatments was used with main effects of corn grain endosperm type (floury or vitreous) conserved as high-moisture corn (HMC) or dry ground corn (DGC). Rations were formulated to contain 27.0% starch, 26.6% neutral detergent fiber (NDF), 19.1% forage NDF, and 16.5% crude protein. Corn grain treatments supplied 86.6% of dietary starch and contained alfalfa silage as the sole forage. Dry matter intake was increased 1.3 kg/d by DGC compared with HMC. The increase in DMI by DGC was related to a shorter intermeal interval (104.4 vs. 118.2 min/d), and meal size was not affected by treatment. Dry ground corn decreased rumination bout length and number of chews per bout compared with HMC. No differences were detected between endosperm treatments for DMI, yields of milk, 3.5% fat-corrected milk (FCM), milk fat, protein, lactose, or solids-not-fat (SNF). Mean yield of 3.5% FCM across treatments was 47.5 kg/d. However, a tendency for an interaction was observed for feed efficiency; floury endosperm increased efficiency 0.05 kg 3.5% FCM per kg of DMI for DGC but decreased it by 0.14 kg 3.5% FCM per kg of DMI for HMC relative to vitreous endosperm. Vitreous compared with floury corn tended to increase true protein concentration in milk when conserved as DGC (2.68% vs. 2.62%) but not as HMC. Concentration of SNF was increased by DGC compared with HMC (8.45 vs. 8.37%) due, in part, to the effect of treatment on milk protein concentration. Body weight was not affected by treatment, but vitreous endosperm tended to increase loss of body condition compared with floury endosperm. Corn endosperm type and conservation method had little effect on productive performance of high-producing cows.
Assuntos
Lactação , Zea mays , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Digestão , Ingestão de Alimentos , Endosperma , Comportamento Alimentar , Feminino , Rúmen , SilagemRESUMO
Phenylketonuria (PKU) is an inborn error of phenylalanine metabolism primarily treated through a phenylalanine-restrictive diet that is frequently supplemented with an amino acid formula to maintain proper nutrition. Little is known of the effects of these dietary interventions on the gut microbiome of PKU patients, particularly in adults. In this study, we sequenced the V4 region of the 16S rRNA gene from stool samples collected from adults with PKU (n = 11) and non-PKU controls (n = 21). Gut bacterial communities were characterized through measurements of diversity and taxa abundance. Additionally, metabolic imputation was performed based on detected bacteria. Gut community diversity was lower in PKU individuals, though this effect was only statistically suggestive. A total of 65 genera across 5 phyla were statistically differentially abundant between PKU and control samples (p < 0.001). Additionally, we identified six metabolic pathways that differed between groups (p < 0.05), with four enriched in PKU samples and two in controls. While the child PKU gut microbiome has been previously investigated, this is the first study to explore the gut microbiome of adult PKU patients. We find that microbial diversity in PKU children differs from PKU adults and highlights the need for further studies to understand the effects of dietary restrictions.
RESUMO
Our objective was to determine the effects of uncouplers of oxidative phosphorylation on the metabolism of propionate in liver tissue of dairy cows in the postpartum period. A total of 8 primiparous dairy cows were biopsied for liver tissue explants in 2 block-design experiments. Cows were 5.9 ± 2.8 (mean ± SD) days in milk, and the 2 experiments were run concurrently. Treatments for experiment 1 were 10 µM 2,4-dinitrophenol methyl ether (DNPME) or propylene carbonate (vehicle control). Treatments for experiment 2 were 5 mM sodium salicylate (SAL) or no treatment (control). Explants were incubated in 2.5 mM [13C3]propionate with treatments and terminated after 0.5, 15, and 60 min of exposure to tracer. Treatment with DNPME had no effects on measured metabolites compared with control. Treatment with SAL increased total 13C% enrichment of succinate (3.03 vs. 2.45%), but tended to decrease total 13C% enrichment of fumarate (2.86 vs. 3.10%) and decreased total 13C% enrichment of malate (3.96 vs. 4.58%) compared with the control. Treatment with DNPME appeared to have no effects on hepatic propionate metabolism, and treatment with SAL may impair the succinate dehydrogenase reaction.
Assuntos
Lactação , Propionatos , Animais , Bovinos , Dieta , Feminino , Fígado/metabolismo , Leite , Fosforilação Oxidativa , Período Pós-Parto , Propionatos/metabolismoRESUMO
Our objective was to determine the temporal effects of increasing supply of propionate on propionate metabolism in liver tissue of dairy cows in the postpartum (PP) period. A total of 6 dairy cows [primiparous: n = 3, 9.00 ± 1.00 d PP (mean ± SD) and multiparous: n = 3; 4.67 ± 1.15 d PP] were biopsied for liver explants in a block-design experiment. Explants were treated with 3 concentrations of [13C3]sodium propionate of 1, 2, or 4 mM. Explants were incubated in 2 mL of Medium 199 supplemented with 1% BSA, 0.6 mM oleic acid, 2 mM sodium l-lactate, 0.2 mM sodium pyruvate, and 0.5 mMl-glutamine at 38°C and sampled at 0.5, 15, and 60 min. Increasing the concentration of [13C3]propionate increased total 13C% enrichment of propionyl coenzyme A (CoA), succinate, fumarate, malate, and citrate with time. Concentration of propionate did not affect total 13C% enrichment of hepatic glucose or acetyl CoA, but total 13C% enrichment increased with time for hepatic glucose. The 13C labeling from propionate was incorporated into acetyl CoA, but increased concentrations of propionate did not result in greater labeling of acetyl CoA. However, increases in 13C% enrichment of [M+4]citrate and [M+5]citrate concentrations of [13C3]propionate indicate propionate conversion to acetyl CoA and subsequent entry of acetyl CoA into the tricarboxylic acid cycle in dairy cows in the PP period. This research presents evidence that despite an increase in hepatic acetyl CoA concentration and general consensus on the upregulation of gluconeogenesis of dairy cows during the PP period, carbon derived from propionate contributes to the pool of acetyl CoA, which increases as concentration of propionate increases, in addition to stimulating oxidation of acetyl CoA from other sources. Because of the hypophagic effects of propionate, but importance of propionate as a glucose precursor, a balance of propionate supply to dairy cows could lead to improvements in dry matter intake, and subsequently, health and production in dairy cows.
Assuntos
Bovinos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Período Pós-Parto/metabolismo , Propionatos/administração & dosagem , Acetilcoenzima A/metabolismo , Animais , Ácido Cítrico/metabolismo , Ciclo do Ácido Cítrico , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Feminino , Fumaratos/metabolismo , Gluconeogênese , Glucose/metabolismo , Lactação/fisiologia , Malatos/metabolismo , Propionatos/metabolismoRESUMO
Studies have demonstrated that environmental, host genetic, and socioeconomic factors influence the breast cancer prevalence landscape with a far-reaching influence on racial disparity to subtypes of breast cancer. To understand whether breast tissue harbors race-specific microbiota, we performed 16S rRNA gene-based sequencing of retrospective tumor and matched normal tissue adjacent to tumor (NAT) samples collected from Black non-Hispanic (BNH) and White non-Hispanic (WNH) women. Analysis of Triple Negative Breast cancer (TNBC) and Triple Positive Breast Cancer (TPBC) tissues for microbiota composition revealed significant differences in relative abundance of specific taxa at both phylum and genus levels between WNH and BNH women cohorts. Our main findings are that microbial diversity as measured by Shannon index was significantly lower in BNH TNBC tumor tissue as compared to matched NAT zone. In contrast, the WNH cohort had an inverse pattern for the Shannon index, when TNBC tumor tissue was compared to the matched NAT. Unweighted Principle Coordinates Analysis (PCoA) revealed a distinct clustering of tumor and NAT microbiota in both BNH and WNH cohorts.
Assuntos
Negro ou Afro-Americano/estatística & dados numéricos , Etnicidade/estatística & dados numéricos , Microbiota/genética , Neoplasias de Mama Triplo Negativas , População Branca/estatística & dados numéricos , Adulto , Idoso , Biodiversidade , Feminino , Hispânico ou Latino , Humanos , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Estudos Retrospectivos , Neoplasias de Mama Triplo Negativas/epidemiologia , Neoplasias de Mama Triplo Negativas/etnologia , Neoplasias de Mama Triplo Negativas/microbiologiaRESUMO
Chagas disease, caused by the hemoflagellate protist Trypanosoma cruzi, affects nearly 6 million people worldwide, mainly in Latin America. Hematophagous triatomine insects ("kissing bugs") are the primary vectors of T. cruzi throughout the Americas and feed on a variety of animals, including humans. Control of triatomines is central to the control of T. cruzi infection. Recent advances in mitigation of other insect-borne diseases via the manipulation of insect-associated bacteria as a way to halt or slow disease transmission has opened questions to the applicability of these methods to Chagas disease vectors. Few studies have examined the hindgut microbiome of triatomines found in North America. In the current study, two species of triatomines were collected across Texas, United States, screened for the presence of T. cruzi, and analyzed for the bacterial composition of their hindguts using a 16S rRNA gene-fragment metabarcoding approach. We compared diversity of microbial community profiles across 74 triatomine insects to address the hypothesis that the richness and abundance of bacterial groups differ by T. cruzi infection and strain type, blood meal engorgement status, insect species, sex, and collection location. The gut microbial community of individual triatomines was characterized by low intraindividual taxonomic diversity and high interindividual variation that was weakly predicted by triatomine species, and was not predicted by triatomine sex, collection location, T. cruzi infection status, or blood meal score. However, we did find bacterial groups enriched in T. cruzi-positive individuals, including Enterobacterales, and Petrimonas. Additionally, we detected Salmonella enterica subspecies diarizonae in three triatomine individuals; this species is commonly associated with reptiles and domesticated animals and is a pathogen of humans. These data suggest that Triatoma spp. in Texas have variable patterns of colonized and transient bacteria, and may aid in development of novel means to interfere with transmission of the Chagas disease parasite T. cruzi. Deeper understanding of the effects of parasite infection on diverse insect vector microbiomes may highlight disease transmission risk and facilitate discovery of possible intervention strategies for biological control of this emerging vector-borne disease of global health significance.
RESUMO
Air pollution exposure is known to contribute to the progression of cardiovascular disease (CVD) and there is increasing evidence that dysbiosis of the gut microbiome may also play a role in the pathogenesis of CVD, including atherosclerosis. To date, the effects of inhaled air pollution mixtures on the intestinal epithelial barrier (IEB), and microbiota profiles are not well characterized, especially in susceptible individuals with comorbidity. Thus, we investigated the effects of inhaled ubiquitous air-pollutants, wood-smoke (WS) and mixed diesel and gasoline vehicle exhaust (MVE) on alterations in the expression of markers of integrity, inflammation, and microbiota profiles in the intestine of atherosclerotic Apolipoprotein E knockout (ApoE-/-) mice. To do this, male 8 wk-old ApoE-/- mice, on a high-fat diet, were exposed to either MVE (300⯵g/m3 PM), WS; (â¼450⯵g/m3 PM), or filtered air (FA) for 6â¯h/d, 7â¯d/wk, for 50â¯d. Immunofluorescence and RT-PCR were used to quantify the expression of IEB components and inflammatory factors, including mucin (Muc)-2, tight junction (TJ) proteins, matrix metalloproteinase (MMP)-9, tumor necrosis factor (TNF)-α, and interleukin (IL)-1ß, as well as Toll-like receptor (TLR)-4. Microbial profiling of the intestine was done using Illumina 16S sequencing of V4 16S rRNA PCR amplicons. We observed a decrease in intestinal Muc2 and TJ proteins in both MVE and WS exposures, compared to FA controls, associated with a significant increase in MMP-9, TLR-4, and inflammatory marker expression. Both WS and MVE-exposure resulted in decreased intestinal bacterial diversity, as well as alterations in microbiota profiles, including the Firmicutes: Bacteroidetes ratio at the phylum level. Our findings suggest inhalation exposure to either MVE or WS result in alterations in components involved in mucosal integrity, and also microbiota profiles and diversity, which are associated with increased markers of an inflammatory response.
Assuntos
Poluentes Atmosféricos/toxicidade , Apolipoproteínas E , Microbioma Gastrointestinal , Poluição do Ar , Animais , Inflamação , Intestinos , Masculino , Camundongos , Camundongos Knockout , RNA Ribossômico 16S , Emissões de VeículosRESUMO
Our objective was to determine the effects of uncouplers of oxidative phosphorylation on feeding behavior of lactating dairy cows. We hypothesized that uncouplers of oxidative phosphorylation would increase meal size and meal length and performed 2 experiments to test our hypothesis. In experiment 1, 4 late-lactation cows (345 ± 48.4 d in milk; mean ± SD) were administered a daily intrajugular injection of either 10 mg/kg of BW0.75 of 2,4-dinitrophenol methyl ether (DNPME) and propylene carbonate or propylene carbonate (control; CON) in a crossover design with 2-d periods. In experiment 2, 8 early-lactation cows (11.3 ± 0.89 d in milk) were administered a daily intrajugular injection via jugular catheter of either 50 mg/kg of BW of sodium salicylate (SAL) and saline or saline (control; CON) in a crossover design with 1-d periods. Feeding behavior was recorded by a computerized data acquisition system and analyzed for the first 4 h after access to feed within 15 min of treatment for both experiments. Neither DNPME nor SAL affected meal size over the first 4 h after access to feed. However, DNPME increased meal length by 6.4 min (26.3 vs. 19.9 min) and tended to decrease the number of meals (2.55 vs. 2.78 meals/4 h) over the first 4 h after access to feed compared with CON. Both DNPME and SAL decreased eating rate over the first 4 h after access to feed compared with their respective controls (0.10 vs. 0.12 kg/min for DNPME vs. CON; 0.06 vs. 0.07 kg/min for SAL vs. CON). Lack of treatment effects on meal size may have been caused by increased rate of oxidation of fuels compensating for the disruption of oxidative phosphorylation.
Assuntos
Bovinos/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Salicilato de Sódio/farmacologia , Desacopladores/farmacologia , Ração Animal/análise , Animais , Aleitamento Materno , Estudos Cross-Over , Dieta/veterinária , Feminino , Lactação/efeitos dos fármacos , Fígado/química , Leite , Salicilato de Sódio/administração & dosagem , Desacopladores/administração & dosagemRESUMO
A faster rate of infusion of propionic acid into the rumen of cows in the postpartum period increased meal size compared with a slower rate of infusion in a previous experiment. Because propionate is anaplerotic and stimulates oxidation of acetyl coenzyme A (CoA) in the liver, and hepatic oxidation has been linked to satiety, this result was opposite to our expected response. We then hypothesized that the faster rate of infusion might have saturated the pathway for propionate metabolism in hepatocytes resulting in lower first-pass extraction by the liver. Because we were measuring feeding behavior, we could not sample blood and liver tissue over time in that experiment. Therefore, to determine the temporal effects of propionic acid (PA) infusion on hepatic metabolism and plasma metabolites over the time course of a meal, we infused 1.25 mol of PA (2.5 L of 0.5M PA) over 5 min (FST) or 15 min (SLW) into the rumen. We evaluated response to PA infusions both before feeding, when ruminal PA production by rumen microbes is lower and hepatic acetyl CoA concentration is greater, and 4 h after feeding, when PA production is greater and hepatic acetyl CoA concentration is lower. Blood and liver samples were collected before, and after 5, 15, and 30 min of infusion. Contrary to our hypothesis, the rate of PA infusion into the rumen did not affect plasma propionate concentration, indicating the FST effects on feeding behavior were not because of a limitation on propionate uptake by the liver. However, FST increased plasma glucose and insulin concentrations faster than SLW, resulting in a reduction in plasma nonesterified fatty acid concentration during the time frame of meals. Decreased plasma nonesterified fatty acid concentration during infusion likely decreased the supply of acetyl CoA for oxidation in the liver. The FST treatment also increased fumarate concentration at 5 min after the initiation of infusion but did not affect oxaloacetate concentration compared with SLW, consistent with a limitation to propionate metabolism at that reaction. A metabolic bottleneck at the malate dehydrogenase reaction for FST compared with SLW would further contribute to a reduction in hepatic oxidation within the time frame of a meal, allowing greater meal size, consistent with the hepatic oxidation theory and our previous results.
Assuntos
Bovinos/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Propionatos/administração & dosagem , Acetilcoenzima A/metabolismo , Animais , Glicemia/análise , Ácidos Graxos não Esterificados/sangue , Feminino , Insulina/sangue , Lactação , Fígado/metabolismo , Oxirredução , Período Pós-Parto/efeitos dos fármacos , Rúmen/metabolismo , SaciaçãoRESUMO
The objective of this research was to identify potential short-term metabolic bottlenecks of propionate metabolism in the liver of dairy cows in the postpartum (PP) period and how such bottlenecks are affected by feeding status. Propionate, produced primarily from the fermentation of starch, decreases dry matter intake for cows in the postpartum period, likely by stimulating oxidation of acetyl-CoA in the liver. In this study, 8 dairy cows [2 blocks of 4 cows each, 6.63 ± 1.19 (mean ± SD) days PP; body condition score of 2.84 ± 0.39] were administered a pulse dose of either 1.5 mol/500 mL of propionic acid (PA) or 500 mL of water (control; CON) to the rumen either 1 h before or 2 h after feeding in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Liver tissue was sampled at -1, 10 and 20 min relative to dosing, and blood was sampled at -30, -20, -10, -1, 5, 10, 15, 20, 25, 30, and 60 min relative to dosing. We hypothesized that rapid propionate absorption results in bottlenecks as enzymes become saturated and cofactors require regeneration. The PA treatment increased plasma propionate and insulin concentrations rapidly, with peaks reached by 5 min regardless of feeding status and cleared from the plasma within 30 min of dosing. The PA treatment decreased plasma nonesterified fatty acid concentration over 30 min compared with CON before but not after feeding. The PA treatment decreased plasma ß-hydroxybutyrate concentration and increased plasma lactate concentration compared with CON both before and after feeding. The PA treatment also increased hepatic pyruvate and lactate concentrations compared with CON. The PA treatment tended to increase hepatic isocitrate and fumarate concentrations but did not affect hepatic malate and oxaloacetate concentrations, suggesting that elevated mitochondrial NADH/NAD+ may have slowed the isocitrate dehydrogenase and fumarase reactions. The PA treatment also increased succinate concentration compared with CON, suggesting that a bottleneck may be present at succinate dehydrogenase. The PA treatment tended to increase citrate concentration despite having no effects on acetyl-CoA or oxaloacetate concentrations. These results are in agreement with our hypothesis that rapid absorption of propionate from the rumen and extraction by the liver results in metabolic bottlenecks in the liver that may affect feeding behavior and dry matter intake in dairy cows in the PP period.