Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 82(21): 4093-4104, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36098983

RESUMO

Breast-conserving surgery (BCS) is commonly used for the treatment of early-stage breast cancer. Following BCS, approximately 20% to 30% of patients require reexcision because postoperative histopathology identifies cancer in the surgical margins of the excised specimen. Quantitative micro-elastography (QME) is an imaging technique that maps microscale tissue stiffness and has demonstrated a high diagnostic accuracy (96%) in detecting cancer in specimens excised during surgery. However, current QME methods, in common with most proposed intraoperative solutions, cannot image cancer directly in the patient, making their translation to clinical use challenging. In this proof-of-concept study, we aimed to determine whether a handheld QME probe, designed to interrogate the surgical cavity, can detect residual cancer directly in the breast cavity in vivo during BCS. In a first-in-human study, 21 BCS patients were scanned in vivo with the QME probe by five surgeons. For validation, protocols were developed to coregister in vivo QME with postoperative histopathology of the resected tissue to assess the capability of QME to identify residual cancer. In four cavity aspects presenting cancer and 21 cavity aspects presenting benign tissue, QME detected elevated stiffness in all four cancer cases, in contrast to low stiffness observed in 19 of the 21 benign cases. The results indicate that in vivo QME can identify residual cancer by directly imaging the surgical cavity, potentially providing a reliable intraoperative solution that can enable more complete cancer excision during BCS. SIGNIFICANCE: Optical imaging of microscale tissue stiffness enables the detection of residual breast cancer directly in the surgical cavity during breast-conserving surgery, which could potentially contribute to more complete cancer excision.


Assuntos
Técnicas de Imagem por Elasticidade , Mastectomia Segmentar , Neoplasia Residual , Feminino , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Técnicas de Imagem por Elasticidade/métodos , Margens de Excisão , Mastectomia Segmentar/métodos , Neoplasia Residual/diagnóstico por imagem
2.
Biomed Opt Express ; 12(3): 1666-1682, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33796380

RESUMO

Intraoperative margin assessment is needed to reduce the re-excision rate of breast-conserving surgery. One possibility is optical palpation, a tactile imaging technique that maps stress (force applied across the tissue surface) as an indicator of tissue stiffness. Images (optical palpograms) are generated by compressing a transparent silicone layer on the tissue and measuring the layer deformation using optical coherence tomography (OCT). This paper reports, for the first time, the diagnostic accuracy of optical palpation in identifying tumor within 1 mm of the excised specimen boundary using an automated classifier. Optical palpograms from 154 regions of interest (ROIs) from 71 excised tumor specimens were obtained. An automated classifier was constructed to predict the ROI margin status by first choosing a circle diameter, then searching for a location within the ROI where the circle was ≥ 75% filled with high stress (indicating a positive margin). A range of circle diameters and stress thresholds, as well as the impact of filtering out non-dense tissue regions, were tested. Sensitivity and specificity were calculated by comparing the automated classifier results with the true margin status, determined from co-registered histology. 83.3% sensitivity and 86.2% specificity were achieved, compared to 69.0% sensitivity and 79.0% specificity obtained with OCT alone on the same dataset using human readers. Representative optical palpograms show that positive margins containing a range of cancer types tend to exhibit higher stress compared to negative margins. These results demonstrate the potential of optical palpation for margin assessment.

3.
Cancer Res ; 80(8): 1773-1783, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32295783

RESUMO

Inadequate margins in breast-conserving surgery (BCS) are associated with an increased likelihood of local recurrence of breast cancer. Currently, approximately 20% of BCS patients require repeat surgery due to inadequate margins at the initial operation. Implementation of an accurate, intraoperative margin assessment tool may reduce this re-excision rate. This study determined, for the first time, the diagnostic accuracy of quantitative micro-elastography (QME), an optical coherence tomography (OCT)-based elastography technique that produces images of tissue microscale elasticity, for detecting tumor within 1 mm of the margins of BCS specimens. Simultaneous OCT and QME were performed on the margins of intact, freshly excised specimens from 83 patients undergoing BCS and on dissected specimens from 7 patients undergoing mastectomy. The resulting three-dimensional images (45 × 45 × 1 mm) were coregistered with postoperative histology to determine tissue types present in each scan. Data from 12 BCS patients and the 7 mastectomy patients served to build a set of images for reader training. One hundred and fifty-four subimages (10 × 10 × 1 mm) from the remaining 71 BCS patients were included in a blinded reader study, which resulted in 69.0% sensitivity and 79.0% specificity using OCT images, versus 92.9% sensitivity and 96.4% specificity using elasticity images. The quantitative nature of QME also facilitated development of an automated reader, which resulted in 100.0% sensitivity and 97.7% specificity. These results demonstrate high accuracy of QME for detecting tumor within 1 mm of the margin and the potential for this technique to improve outcomes in BCS. SIGNIFICANCE: An optical imaging technology probes breast tissue elasticity to provide accurate assessment of tumor margin involvement in breast-conserving surgery.


Assuntos
Adenocarcinoma Mucinoso/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Carcinoma Ductal de Mama/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Margens de Excisão , Mastectomia Segmentar/métodos , Adenocarcinoma Mucinoso/patologia , Adenocarcinoma Mucinoso/cirurgia , Adulto , Idoso , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/cirurgia , Técnicas de Imagem por Elasticidade/normas , Feminino , Humanos , Mastectomia Segmentar/normas , Pessoa de Meia-Idade , Reoperação , Tomografia de Coerência Óptica
4.
EMBO Mol Med ; 11(12): e10923, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31709774

RESUMO

High extracellular matrix (ECM) content in solid cancers impairs tumour perfusion and thus access of imaging and therapeutic agents. We have devised a new approach to degrade tumour ECM, which improves uptake of circulating compounds. We target the immune-modulating cytokine, tumour necrosis factor alpha (TNFα), to tumours using a newly discovered peptide ligand referred to as CSG. This peptide binds to laminin-nidogen complexes in the ECM of mouse and human carcinomas with little or no peptide detected in normal tissues, and it selectively delivers a recombinant TNFα-CSG fusion protein to tumour ECM in tumour-bearing mice. Intravenously injected TNFα-CSG triggered robust immune cell infiltration in mouse tumours, particularly in the ECM-rich zones. The immune cell influx was accompanied by extensive ECM degradation, reduction in tumour stiffness, dilation of tumour blood vessels, improved perfusion and greater intratumoral uptake of the contrast agents gadoteridol and iron oxide nanoparticles. Suppressed tumour growth and prolonged survival of tumour-bearing mice were observed. These effects were attainable without the usually severe toxic side effects of TNFα.


Assuntos
Matriz Extracelular/metabolismo , Animais , Linhagem Celular , Técnicas de Visualização da Superfície Celular , Meios de Contraste/metabolismo , Feminino , Compostos Férricos/metabolismo , Gadolínio/metabolismo , Compostos Heterocíclicos/metabolismo , Humanos , Masculino , Camundongos , Nanopartículas/metabolismo , Compostos Organometálicos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
J Biophotonics ; 12(1): e201800180, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30054979

RESUMO

Accurate and effective removal of tumor in one operation is an important goal of breast-conserving surgery. However, it is not always achieved. Surgeons often utilize manual palpation to assess the surgical margin and/or the breast cavity. Manual palpation, however, is subjective and has relatively low resolution. Here, we investigate a tactile imaging technique, optical palpation, for the visualization of tumor. Optical palpation generates maps of the stress at the surface of tissue under static preload compression. Stress is evaluated by measuring the deformation of a contacting thin compliant layer with known mechanical properties using optical coherence tomography. In this study, optical palpation is performed on 34 freshly excised human breast specimens. Wide field-of-view (up to ~46 × 46 mm) stress images, optical palpograms, are presented from four representative specimens, demonstrating the capability of optical palpation to visualize tumor. Median stress reported for adipose tissue, 4 kPa, and benign dense tissue, 8 kPa, is significantly lower than for invasive tumor, 60 kPa. In addition, we demonstrate that optical palpation provides contrast consistent with a related optical technique, quantitative micro-elastography. This study demonstrates that optical palpation holds promise for visualization of tumor in breast-conserving surgery.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Imagem Óptica , Palpação/métodos , Neoplasias da Mama/cirurgia , Humanos , Processamento de Imagem Assistida por Computador , Mastectomia , Tomografia de Coerência Óptica
6.
Biomed Opt Express ; 9(3): 1082-1096, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29541505

RESUMO

Currently, 20-30% of patients undergoing breast-conserving surgery require a second surgery due to insufficient surgical margins in the initial procedure. We have developed a wide-field quantitative micro-elastography system for the assessment of tumor margins. In this technique, we map tissue elasticity over a field-of-view of ~46 × 46 mm. We performed wide-field quantitative micro-elastography on thirteen specimens of freshly excised tissue acquired from patients undergoing a mastectomy. We present wide-field optical coherence tomography (OCT) images, qualitative (strain) micro-elastograms and quantitative (elasticity) micro-elastograms, acquired in 10 minutes. We demonstrate that wide-field quantitative micro-elastography can extend the range of tumors visible using OCT-based elastography by providing contrast not present in either OCT or qualitative micro-elastography and, in addition, can reduce imaging artifacts caused by a lack of contact between tissue and the imaging window. Also, we describe how the combined evaluation of OCT, qualitative micro-elastograms and quantitative micro-elastograms can improve the visualization of tumor.

7.
Biomed Opt Express ; 9(12): 6331-6349, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31065432

RESUMO

It has been demonstrated that optical coherence micro-elastography (OCME) provides additional contrast of tumor compared to optical coherence tomography (OCT) alone. Previous studies, however, have predominantly been performed on mastectomy specimens. Such specimens typically differ substantially in composition and geometry from the more clinically relevant wide-local excision (WLE) specimens excised during breast-conserving surgery. As a result, it remains unclear if the mechanical contrast observed is maintained in WLE specimens. In this manuscript, we begin to address this issue by performing a feasibility study of OCME on 17 freshly excised, intact WLE specimens. In addition, we present two developments required to sustain the progression of OCME towards intraoperative deployment. First, to enable the rapid visualization of en face images required for intraoperative assessment, we describe an automated segmentation algorithm to fuse en face micro-elastograms with OCT images to provide dual contrast images. Secondly, to validate contrast in micro-elastograms, we present a method that enables co-registration of en face images with histology of WLE specimens, sectioned in the orthogonal plane, without any modification to the standard clinical workflow. We present a summary of the observations across the 17 specimens imaged in addition to representative micro-elastograms and OCT images demonstrating contrast in a number of tumor margins, including those involved by invasive ductal carcinoma, mucinous carcinoma, and solid-papillary carcinoma. The results presented here demonstrate the potential of OCME for imaging tumor margins.

8.
Opt Lett ; 42(7): 1233-1236, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362737

RESUMO

Depth-encoded optical coherence elastography (OCE) enables simultaneous acquisition of two three-dimensional (3D) elastograms from opposite sides of a sample. By the choice of suitable path-length differences in each of two interferometers, the detected carrier frequencies are separated, allowing depth-ranging from each interferometer to be performed simultaneously using a single spectrometer. We demonstrate depth-encoded OCE on a silicone phantom and a freshly excised sample of mouse liver. This technique minimizes the required spectral detection hardware and halves the total scan time. Depth-encoded OCE may expedite clinical translation in time-sensitive applications requiring rapid 3D imaging of multiple tissue surfaces, such as tumor margin assessment in breast-conserving surgery.


Assuntos
Imageamento Tridimensional/métodos , Tomografia de Coerência Óptica/métodos , Animais , Técnicas de Imagem por Elasticidade , Fígado/citologia , Fígado/diagnóstico por imagem , Camundongos , Imagens de Fantasmas , Fatores de Tempo
9.
Biomed Opt Express ; 7(10): 4139-4153, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27867721

RESUMO

Incomplete excision of malignant tissue is a major issue in breast-conserving surgery, with typically 20 - 30% of cases requiring a second surgical procedure arising from postoperative detection of an involved margin. We report advances in the development of a new intraoperative tool, optical coherence micro-elastography, for the assessment of tumor margins on the micro-scale. We demonstrate an important step by conducting whole specimen imaging in intraoperative time frames with a wide-field scanning system acquiring mosaicked elastograms with overall dimensions of ~50 × 50 mm, large enough to image an entire face of most lumpectomy specimens. This capability is enabled by a wide-aperture annular actuator with an internal diameter of 65 mm. We demonstrate feasibility by presenting elastograms recorded from freshly excised human breast tissue, including from a mastectomy, lumpectomies and a cavity shaving.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA