Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 137(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38832513

RESUMO

Division plane positioning is crucial for proper growth and development in many organisms. In plants, the division plane is established before mitosis, by accumulation of a cytoskeletal structure called the preprophase band (PPB). The PPB is thought to be essential for recruitment of division site-localized proteins, which remain at the division site after the PPB disassembles. Here, we show that the division site-localized protein TANGLED1 (TAN1) is recruited independently of the PPB to the cell cortex by the plant cytokinetic machinery, the phragmoplast, from experiments using both the PPB-defective mutant discordia1 (dcd1) and chemical treatments that disrupt the phragmoplast in maize. TAN1 recruitment to de novo sites on the cortex is partially dependent on intact actin filaments and the myosin XI motor protein OPAQUE1 (O1). These data imply a yet unknown role for TAN1 and possibly other division site-localized proteins during the last stages of cell division when the phragmoplast touches the cell cortex to complete cytokinesis.


Assuntos
Citocinese , Proteínas de Plantas , Zea mays , Zea mays/metabolismo , Zea mays/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Citoesqueleto de Actina/metabolismo
2.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496554

RESUMO

Division plane positioning is critical for proper growth and development in many organisms. In plants, the division plane is established before mitosis, by accumulation of a cytoskeletal structure called the preprophase band (PPB). The PPB is thought to be essential for recruitment of division site localized proteins, which remain at the division site after the PPB disassembles. Here, we show that a division site localized protein, TANGLED1 (TAN1), is recruited independently of the PPB to the cell cortex at sites, by the plant cytokinetic machinery, the phragmoplast. TAN1 recruitment to de novo sites on the cortex is partially dependent on intact actin filaments and the myosin XI motor protein OPAQUE1 (O1). These data imply a yet unknown role for TAN1 and possibly other division site localized proteins during the last stages of cell division when the phragmoplast touches the cell cortex to complete cytokinesis.

3.
Front Plant Sci ; 14: 1204889, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484472

RESUMO

Introduction: During proliferative plant cell division, the new cell wall, called the cell plate, is first built in the middle of the cell and then expands outward to complete cytokinesis. This dynamic process requires coordinated movement and arrangement of the cytoskeleton and organelles. Methods: Here we use live-cell markers to track the dynamic reorganization of microtubules, nuclei, endoplasmic reticulum, and endomembrane compartments during division and the formation of the cell plate in maize leaf epidermal cells. Results: The microtubule plus-end localized protein END BINDING1 (EB1) highlighted increasing microtubule dynamicity during mitosis to support rapid changes in microtubule structures. The localization of the cell-plate specific syntaxin KNOLLE, several RAB-GTPases, as well as two plasma membrane localized proteins was assessed after treatment with the cytokinesis-specific callose-deposition inhibitor Endosidin7 (ES7) and the microtubule-disrupting herbicide chlorpropham (CIPC). While ES7 caused cell plate defects in Arabidopsis thaliana, it did not alter callose accumulation, or disrupt cell plate formation in maize. In contrast, CIPC treatment of maize epidermal cells occasionally produced irregular cell plates that split or fragmented, but did not otherwise disrupt the accumulation of cell-plate localized proteins. Discussion: Together, these markers provide a robust suite of tools to examine subcellular trafficking and organellar organization during mitosis and cell plate formation in maize.

4.
Plant Cell ; 30(10): 2255-2266, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30150312

RESUMO

One key aspect of cell division in multicellular organisms is the orientation of the division plane. Proper division plane establishment contributes to normal plant body organization. To determine the importance of cell geometry in division plane orientation, we designed a three-dimensional probabilistic mathematical model to directly test the century-old hypothesis that cell divisions mimic soap-film minima. According to this hypothesis, daughter cells have equal volume and the division plane occurs where the surface area is at a minimum. We compared predicted division planes to a plant microtubule array that marks the division site, the preprophase band (PPB). PPB location typically matched one of the predicted divisions. Predicted divisions offset from the PPB occurred when a neighboring cell wall or PPB was directly adjacent to the predicted division site to avoid creating a potentially structurally unfavorable four-way junction. By comparing divisions of differently shaped plant cells (maize [Zea mays] epidermal cells and developing ligule cells and Arabidopsis thaliana guard cells) and animal cells (Caenorhabditis elegans embryonic cells) to divisions simulated in silico, we demonstrate the generality of this model to accurately predict in vivo division. This powerful model can be used to separate the contribution of geometry from mechanical stresses or developmental regulation in predicting division plane orientation.


Assuntos
Arabidopsis/citologia , Modelos Biológicos , Células Vegetais/fisiologia , Zea mays/citologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Divisão Celular , Embrião não Mamífero/citologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Folhas de Planta/citologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sabões/química , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA