Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299742

RESUMO

This paper demonstrates an intruder detection system using a strain-based optical fiber Bragg grating (FBG), machine learning (ML), and adaptive thresholding to classify the intruder as no intruder, intruder, or wind at low levels of signal-to-noise ratio. We demonstrate the intruder detection system using a portion of a real fence manufactured and installed around one of the engineering college's gardens at King Saud University. The experimental results show that adaptive thresholding can help improve the performance of machine learning classifiers, such as linear discriminant analysis (LDA) or logistic regression algorithms in identifying an intruder's existence at low optical signal-to-noise ratio (OSNR) scenarios. The proposed method can achieve an average accuracy of 99.17% when the OSNR level is <0.5 dB.


Assuntos
Aprendizado de Máquina , Fibras Ópticas , Humanos , Algoritmos , Análise Discriminante
2.
Opt Express ; 30(10): 16812-16826, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221516

RESUMO

A reconfigurable optical-to-electrical signal aggregation is proposed, for the first time, using optical signal processing and photo-mixing technology. Two optically modulated quadrature phase-shift keying (QPSK) signals are aggregated into a single 16-quadrature amplitude modulation (16-QAM) signal and, simultaneously, carried over a 28-GHz millimeter wave (MMW) carrier using an optimized heterodyne beating process through a single photodiode. To demonstrate the system reconfigurability, aggregation of two optical binary phase-shift keying signals is mapped into MMW QPSK or four-level pulse amplitude modulation signals by controlling the relative phases and amplitudes, respectively, of the input signals. In addition, the aggregation of two 16-QAM signals into a 256-QAM signal and the aggregation of three QPSK signals into a 64-QAM format are achieved. Besides, we report the effect of laser phase noise on signal aggregation performance. The de-aggregation of the aggregated MMW signals is performed electrically using a successive interference cancellation algorithm. Moreover, a proof-of-concept experiment is conducted to validate the numerical simulations. Two 1-Gbaud BPSK (1 Gbps) and QPSK (2 Gbps) optical signals are optically transmitted over a 20-km single-mode fiber as MMW over fiber signals. Then, the signals are aggregated into QPSK (2 Gbps) and 16-QAM (4 Gbps) 28-GHz MMW signals, respectively. The aggregated signal is further transmitted over a 1-m wireless channel. The performance of the proposed system is evaluated using bit error rate and error vector magnitude metrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA