Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9614, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671304

RESUMO

The abnormal heart conduction, known as arrhythmia, can contribute to cardiac diseases that carry the risk of fatal consequences. Healthcare professionals typically use electrocardiogram (ECG) signals and certain preliminary tests to identify abnormal patterns in a patient's cardiac activity. To assess the overall cardiac health condition, cardiac specialists monitor these activities separately. This procedure may be arduous and time-intensive, potentially impacting the patient's well-being. This study automates and introduces a novel solution for predicting the cardiac health conditions, specifically identifying cardiac morbidity and arrhythmia in patients by using invasive and non-invasive measurements. The experimental analyses conducted in medical studies entail extremely sensitive data and any partial or biased diagnoses in this field are deemed unacceptable. Therefore, this research aims to introduce a new concept of determining the uncertainty level of machine learning algorithms using information entropy. To assess the effectiveness of machine learning algorithms information entropy can be considered as a unique performance evaluator of the machine learning algorithm which is not selected previously any studies within the realm of bio-computational research. This experiment was conducted on arrhythmia and heart disease datasets collected from Massachusetts Institute of Technology-Berth Israel Hospital-arrhythmia (DB-1) and Cleveland Heart Disease (DB-2), respectively. Our framework consists of four significant steps: 1) Data acquisition, 2) Feature preprocessing approach, 3) Implementation of learning algorithms, and 4) Information Entropy. The results demonstrate the average performance in terms of accuracy achieved by the classification algorithms: Neural Network (NN) achieved 99.74%, K-Nearest Neighbor (KNN) 98.98%, Support Vector Machine (SVM) 99.37%, Random Forest (RF) 99.76 % and Naïve Bayes (NB) 98.66% respectively. We believe that this study paves the way for further research, offering a framework for identifying cardiac health conditions through machine learning techniques.


Assuntos
Arritmias Cardíacas , Eletrocardiografia , Aprendizado de Máquina , Humanos , Eletrocardiografia/métodos , Arritmias Cardíacas/diagnóstico , Algoritmos , Monitorização Fisiológica/métodos , Cardiopatias/diagnóstico
2.
Heliyon ; 10(4): e26149, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384569

RESUMO

Biomedical image analysis plays a crucial role in enabling high-performing imaging and various clinical applications. For the proper diagnosis of blood diseases related to red blood cells, red blood cells must be accurately identified and categorized. Manual analysis is time-consuming and prone to mistakes. Analyzing multi-label samples, which contain clusters of cells, is challenging due to difficulties in separating individual cells, such as touching or overlapping cells. High-performance biomedical imaging and several medical applications are made possible by advanced biosensors. We develop an intelligent neural network model that can automatically identify and categorize red blood cells from microscopic medical images using region-based convolutional neural networks (RCNN) and cutting-edge biosensors. Our model successfully navigates obstacles like touching or overlapping cells and accurately recognizes various blood structures. Additionally, we utilized data augmentation as a pre-processing method on microscopic images to enhance the model's computational efficiency and expand the sample size. To refine the data and eliminate noise from the dataset, we utilized the Radial Gradient Index filtering algorithm for imaging data equalization. We exhibit improved detection accuracy and a reduced model loss rate when using medical imagery datasets to apply our proposed model in comparison to existing ResNet and GoogleNet models. Our model precisely detected red blood cells in a collection of medical images with 99% training accuracy and 91.21% testing accuracy. Our proposed model outperformed earlier models like ResNet-50 and GoogleNet by 10-15%. Our results demonstrated that Artificial intelligence (AI)-assisted automated red blood cell detection has the potential to revolutionize and speed up blood cell analysis, minimizing human error and enabling early illness diagnosis.

3.
Biochem Cell Biol ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306631

RESUMO

Currently used lung disease screening tools are expensive in terms of money and time. Therefore, chest radiograph images (CRIs) are employed for prompt and accurate COVID-19 identification. Recently, many researchers have applied Deep learning (DL) based models to detect COVID-19 automatically. However, their model could have been more computationally expensive and less robust, i.e., its performance degrades when evaluated on other datasets. This study proposes a trustworthy, robust, and lightweight network (ChestCovidNet) that can detect COVID-19 by examining various CRIs datasets. The ChestCovidNet model has only 11 learned layers, eight convolutional (Conv) layers, and three fully connected (FC) layers. The framework employs both the Conv and group Conv layers, Leaky Relu activation function, shufflenet unit, Conv kernels of 3×3 and 1×1 to extract features at different scales, and two normalization procedures that are cross-channel normalization and batch normalization. We used 9013 CRIs for training whereas 3863 CRIs for testing the proposed ChestCovidNet approach. Furthermore, we compared the classification results of the proposed framework with hybrid methods in which we employed DL frameworks for feature extraction and support vector machines (SVM) for classification. The study's findings demonstrated that the embedded low-power ChestCovidNet model worked well and achieved a classification accuracy of 98.12% and recall, F1-score, and precision of 95.75%.

4.
Heliyon ; 10(1): e23572, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192866

RESUMO

In this era of advanced information technology, the exploration and development of novel mechanisms to ensure information confidentiality have consistently captivated the attention of upcoming researchers. In this article, we present a pioneering approach that combines DNA sequencing with a four-dimensional (4D) hyperchaotic map to bolster the security of digital information. Our primary focus is on the design of a robust and secure scheme for encrypting color images, leveraging DNA cryptography and hyperchaos. By extracting three distinct DNA sequences, we generate encryption keys through the integration of DNA computing and 4D hyperchaotic maps. Notably, these keys are intricately linked to the plaintext and vary with any alterations in the input. Consequently, the proposed encryption method stands resilient against an array of potential cryptographic attacks. To gauge the algorithm's security, we subject it to rigorous standard statistical analysis. Our findings underscore the efficiency and robustness of the proposed framework, establishing its potential for facilitating secure communication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA