Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
BMJ Paediatr Open ; 8(1)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844386

RESUMO

BACKGROUND: Early-onset neonatal sepsis (EONS) remains an important disease entity due to very serious adverse outcomes if left untreated. Lack of diagnostic tools in identifying healthy from diseased neonates, and clinicians' fear of the missing positive-culture sepsis babies, or babies with clinical sepsis have led to overtreating and unnecessary antibiotic exposure. Kaiser Permanente EONS risk calculator is an internally validated tool that can predict EONS. This sepsis risk calculator (SRC) classifies neonates into three subgroups: (1) ill-appearing, (2) equivocal and (3) well-appearing. We propose a modification to this tool that aims to use it solely for well-appearing babies. This modification represents a more conservative approach to decrease antibiotic exposure and offers an alternative for those hesitant to fully implement this tool. METHODS: This is a dual-centre retrospective study where data were extracted from the electronic medical records. Our primary outcome was to validate the modified use of the SRC with a two-by-two table. Specificity, negative predictive value and expected antibiotic reduction were used to evaluate the tool's feasibility. RESULT: Among 770 babies suspected of EONS, the feasibility of the modified use was tested. The expected antibiotic exposure reduction rate on the modification was 40.4% overall. The proposed modification resulted in a specificity and negative predictive value of 99.28% (95% CI: 97.92% to 99.85%) and 99.5% (95% CI: 99% to 99.8%), respectively. CONCLUSION: The modified use of the sepsis risk calculator has shown that it can safely reduce antibiotic exposure in well-appearing babies. The modified use is used as a 'rule out' test that can identify very low risk of EONS babies, and safely minimise antibiotic exposure. Further prospective studies are needed to examine the efficacy of this use, and quality improvement projects are required to evaluate its applicability in different clinical settings.


Assuntos
Antibacterianos , Sepse Neonatal , Humanos , Estudos Retrospectivos , Antibacterianos/efeitos adversos , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Recém-Nascido , Medição de Risco , Sepse Neonatal/diagnóstico , Sepse Neonatal/prevenção & controle , Feminino , Masculino
2.
Ann Hum Genet ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517009

RESUMO

Congenital hearing loss is one of the most common sensory disabilities worldwide. The genetic causes of hearing loss account for 50% of hearing loss. Genetic causes of hearing loss can be classified as nonsyndromic hearing loss (NSHL) or syndromic hearing loss (SHL). NSHL is defined as a partial or complete hearing loss without additional phenotypes; however, SHL, known as hearing loss, is associated with other phenotypes. Both types follow a simple Mendelian inheritance fashion. Several studies have been conducted to uncover the genetic factors contributing to NSHL and SHL in Saudi patients. However, these studies have encountered certain limitations. This review assesses and discusses the genetic factors underpinning NSHL and SHL globally, with a specific emphasis on the Saudi Arabian context. It also explores the prevalence of the most observed genetic causes of NSHL and SHL in Saudi Arabia. It also sheds light on areas where further research is needed to fully understand the genetic foundations of hearing loss in the Saudi population. This review identifies several gaps in research in NSHL and SHL and provides insights into potential research to be conducted.

3.
Cureus ; 16(1): e52313, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38357047

RESUMO

Introduction Bowel perforation, whether from trauma or other causes, presents with diverse clinical scenarios. Small bowel perforation (SBP), a potentially fatal condition often linked to blunt trauma like motor vehicle accidents, necessitates prompt detection and intervention, crucial for improved outcomes. This study investigated the prevalence, predictors, presentation, diagnostic findings, morbidity, and mortality of traumatic SBP for comprehensive insights. Methodology This was a retrospective cohort study conducted at King Abdulaziz Medical City, Riyadh. A review of 838 cases, which represent all abdominal trauma patients from January 2017 to March 2023, was done. Forty patients who developed SBP and have complete data were included in this study. One case was excluded due to incomplete medical records. Data were collected with the non-probability convenience sampling technique via the BestCare system using a data collection sheet. Data were analyzed with IBM SPSS 29 (IBM Corp., Armonk, NY). Results Out of all abdominal trauma cases (n=838), 40 patients developed SBP (n=40, 4.77%). Males constituted 87.5%, and the most common mechanism was motor vehicle accidents (57.5%). Complications included cardiac arrest, disseminated intravascular coagulation (DIC), and leak (7.5% each). In motor vehicle accidents, SBP primarily affected patients who were in the driver's position (78.3%). Clinical signs at presentation revealed abdominal tenderness (52.5%), abdominal distension (22.5%), and abnormal systolic blood pressure (mean 115.3 mmHg). Linear regression showed gender and age positively associated with morbidity (p=0.474, p=0.543) while BMI exhibited a negative relationship (p=0.314). Logistic regression revealed non-significant predictors of mortality, except for mean initial hematocrit (HCT) (p=0.721, aOR=0.098). Conclusion Our study provides crucial findings on the incidence, patterns, mortality, and morbidity of traumatic bowel perforation, contributing to the existing body of research. The identified prevalence of 4.77% and mortality at 17.5% from the studied population underline the serious impact of this condition, and the 37.5% complication rate observed demonstrates the potential risks involved. The average hospital stay is found to be 14 days, adding further to the disease burden. These findings underscore the importance of specific preventative measures, particularly related to motor vehicle accidents (MVAs), and highlight potential markers for predicting outcomes, such as age, gender, and mean initial HCT. This substantiates the need for further research involving larger cohorts and prospective designs to gain comprehensive insights and establish more robust preventative and treatment strategies.

4.
J Surg Case Rep ; 2024(2): rjae060, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370598

RESUMO

A 53-year-old man underwent a living donor kidney transplantation in the right iliac fossa 25 years prior to presentation. He had been noting an inguinal bugle that became more prominent as the day progressed, and it regressed at night. Upon further investigations, an ultrasound of the allograft revealed moderate-to-severe hydronephrosis. A computed tomography scan revealed herniation of the bladder and part of the transplanted ureter within the supravesical/direct inguinal space. Lichtenstein-like fashion of repair was performed, and the patient continues to enjoy satisfactory graft function with no recurrence. The case illustrates a rare hernia as a late complication of the kidney transplant incision leading to ureteric obstruction and a successful attempt at operative repair.

5.
J Biomol Struct Dyn ; 42(7): 3747-3763, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37402503

RESUMO

In this work, Schiff bases and Thiazolidin-4-ones, were synthesized using Sonication and Microwave techniques, respectively. The Schiff base derivatives (3a-b) were synthesized via the reaction of Sulfathiazole (1) with benzaldehyde derivatives (2a-b), followed by the synthesis of 4-thiazoledinone (4a-b) derivatives by cyclizing the synthesized Schiff bases through thioglycholic acid. All the synthesized compounds were characterized by spectroscopic techniques such as FT IR, NMR and HRMS. The synthesized compounds were tested for their in vitro antimicrobial and antioxidant and in vivo cytotoxicity and hemolysis ability. The synthesized compounds displayed better antimicrobial and antioxidant activity and low toxicity in comparison to reference drugs and negative controls, respectively. The hemolysis test revealed the compounds exhibit lower hemolytic effects and hemolytic values are comparatively low and the safety of compounds is in comparison with standard drugs. Theoretical calculations were carried out by using the molecular operating environment (MOE) and Gaussian computing software and observations were in good agreement with the in vitro and in vivo biological activities. Petra/Osiris/Molinspiration (POM) results indicate the presence of three combined antibacterial, antiviral and antitumor pharmacophore sites. The molecular docking revealed the significant binding affinities and non-bonding interactions between the compounds and Erwinia Chrysanthemi (PDB ID: 1SHK). The molecular dynamics simulation under in silico physiological conditions revealed a stable conformation and binding pattern in a stimulating environment. HighlightsNew series of Thaiazolidin-4-one derivatives have been synthesized.Sonication and microwave techniques are used.Antimicrobial, Antioxidant, cytotoxicity, and hemolysis activities were observed for all synthesized compounds.Molecular Docking and DFT/POM analyses have been predicted.Communicated by Ramaswamy H. Sarma.


Assuntos
Anti-Infecciosos , Antineoplásicos , Humanos , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Bases de Schiff/química , Hemólise , Anti-Infecciosos/química , Sulfanilamida , DNA/química
6.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38004404

RESUMO

The human immunodeficiency virus (HIV) is the primary cause of acquired immune deficiency syndrome (AIDS), one of the deadliest pandemic diseases. Various mechanisms and procedures have been pursued to synthesise several anti-HIV agents, but due to the severe side effects and multidrug resistance spawning from the treatment of HIV/AIDS using highly active retroviral therapy (HAART), it has become imperative to design and synthesise novel anti-HIV agents. Literature has shown that natural sources, particularly the plant kingdom, can release important metabolites that have several biological, mechanistic and structural representations similar to chemically synthesised compounds. Certainly, compounds from natural and ethnomedicinal sources have proven to be effective in the management of HIV/AIDS with low toxicity, fewer side effects and affordability. From plants, fungi and bacteria, coumarin can be obtained, which is a secondary metabolite and is well known for its actions in different stages of the HIV replication cycle: protease, integrase and reverse transcriptase (RT) inhibition, cell membrane fusion and viral host attachment. These, among other reasons, are why coumarin moieties will be the basis of a good building block for the development of potent anti-HIV agents. This review aims to outline the synthetic pathways, structure-activity relationship (SAR) and POM analyses of coumarin hybrids with anti-HIV activity, detailing articles published between 2000 and 2023.

7.
Interdiscip Perspect Infect Dis ; 2023: 9958104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869530

RESUMO

Background: The prevalence of Clostridium difficile infection (CDI) as a common complication among inflammatory bowel disease (IBD) has been reported to increase worldwide and has been associated with a poor IBD outcome. Objectives: In this study, our aim was to report on the prevalence of CDI among IBD vs. non-IBD patients in King Abdulaziz Medical City (KAMC). Methods: This retrospective descriptive study was carried out between 2016 and 2020. Data of 89 patients reported with CDI in KAMC were analyzed for demographics and correlations between various characteristics such as BMI, personal/family history of IBD, infection with CDI, diagnosis, method of diagnosis, and treatment modalities. Results: Of the total 89 CDI patients, 59 (66.3%) were adults and 30 (33.7%) were pediatric, of which 36 (40.4%) were females and 53 (59.6%) were males. PCR was the main method of choice for the diagnosis of CDI (89.9%) followed by a positive-culture result (10.0%). Seventy-eight (87.6%) CDI patients were found to be immunocompromised, with two patients diagnosed with IBDs, one with UC, and one with CD. The recurrence rate was 38.4 (30 patients) among the immunocompromised group in comparison to 27.2 (3 patients) in the immunocompetent group (p=0.584). Conclusion: In this study, we found that adults were more prone to CDI infection, especially within hospital settings, and most of the CDI infections occurred in immunocompromised individuals, with cancer as the most common cause of it.

8.
Cureus ; 15(9): e46114, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37900505

RESUMO

Background Rhinosinusitis is a common condition. Primary care physicians (PCPs) play a vital role in diagnosing and managing rhinosinusitis, including identifying alarm symptoms and signs. However, limited research exists on PCPs' awareness of these alarm symptoms. Objectives This study aimed to assess the awareness of PCPs in Saudi Arabia regarding the alarm symptoms and signs of rhinosinusitis and identify knowledge gaps. Methodology A descriptive cross-sectional study was conducted among 153 PCPs in Taif, Saudi Arabia. An online questionnaire covering demographic data and multiple-choice questions on alarm symptoms and signs of rhinosinusitis was administered. Knowledge level was assessed based on the score of the responses to knowledge items. Data analysis was performed using IBM SPSS software (IBM Corp., Armonk, NY). Results The study revealed a low awareness of alarm symptoms and signs of rhinosinusitis among PCPs. Knowledge gaps were observed in recognizing symptoms and appropriate referral pathways. Participants showed inadequate awareness of severe headaches, frontal swelling, anosmia, cacosmia, and nasal bleeding or crustation as alarm symptoms. The average knowledge score was 4.57 ± 1.91 out of 10. Conclusion The study highlights the need to improve PCP awareness of alarm symptoms and signs of rhinosinusitis in Saudi Arabia. Educational programs should be developed to address knowledge gaps and enhance understanding of guidelines, facilitating early identification and referral of severe cases and improving patient outcomes.

9.
Eur J Med Chem ; 259: 115712, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37567059

RESUMO

Several studies have indicated the potential therapeutic outcomes of combining selective COX-2 inhibitors with tubulin-targeting anticancer agents. In the current study, a novel series of thiazolidin-4-one-based derivatives (7a-q) was designed by merging the pharmacophoric features of some COXs inhibitors and tubulin polymerization inhibitors. Compounds 7a-q were synthesized and evaluated for their cytotoxic activity against MCF7, HT29, and A2780 cancer cell lines (IC50 = 0.02-17.02 µM). The cytotoxicity of 7a-q was also assessed against normal MRC5 cells (IC50 = 0.47-13.46 µM). Compounds 7c, 7i, and 7j, the most active in the MTT assay, significantly reduced the number of HT29 colonies compared to the control. Compounds 7c, 7i, and 7j also induced significant decreases in the tumor volumes and masses in Ehrlich solid carcinoma-bearing mice compared to the control. The three compounds also exhibited significant anti-HT29 migration activity in the wound-healing assay. They have also induced cell cycle arrest in HT29 cells at the S and G2/M phases. In addition, they induced significant increases in both early and late apoptotic events in HT29 cells compared to the control, where 7j showed the highest effect. On the other hand, compound 7j (1 µM) displayed weak inhibitory activity against tubulin polymerization compared to colchicine (3 µM). On the other hand, compounds 7a-q inhibited the activity of COX-2 (IC50 = 0.42-29.11 µM) compared to celecoxib (IC50 = 0.86 µM). In addition, 7c, 7i, and 7j showed moderate inhibition of inflammation in rats compared to indomethacin, with better GIT safety profiles. Molecular docking analysis revealed that 7c, 7i, and 7j have higher binding free energies towards COX-2 than COX-1. These above results suggested that 7j could serve as a potential anticancer drug candidate.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Ratos , Camundongos , Humanos , Animais , Feminino , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Tubulina (Proteína)/metabolismo , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2/metabolismo , Anti-Inflamatórios/farmacologia , Antineoplásicos/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade
10.
Saudi Pharm J ; 31(6): 998-1018, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37234350

RESUMO

Pyran is a heterocyclic group containing oxygen that possesses a variety of pharmacological effects. Pyran is also one of the most prevalent structural subunits in natural products, such as xanthones, coumarins, flavonoids, benzopyrans, etc. Additionally demonstrating the neuroprotective properties of pyrans is the fact that this heterocycle has recently attracted the attention of scientists worldwide. Alzheimer's Disease (AD) treatment and diagnosis are two of the most critical research objectives worldwide. Increased amounts of extracellular senile plaques, intracellular neurofibrillary tangles, and a progressive shutdown of cholinergic basal forebrain neuron transmission are often related with cognitive impairment. This review highlights the various pyran scaffolds of natural and synthetic origin that are effective in the treatment of AD. For better understanding synthetic compounds are categorized as different types of pyran derivatives like chromene, flavone, xanthone, xanthene, etc. The discussion encompasses both the structure-activity correlations of these compounds as well as their activity against AD. Because of the intriguing actions that were uncovered by these pyran-based scaffolds, there is no question that they are at the forefront of the search for potential medication candidates that could treat Alzheimer's disease.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37235455

RESUMO

Nucleoside analogs are an important, well-established class of clinically useful medicinal agents that exhibit potent antimicrobial activity. Thus, we designed to explore the synthesis and spectral characterization of 5'-O-(myristoyl)thymidine esters (2-6) for in vitro antimicrobial, molecular docking, molecular dynamics, SAR, and POM analyses. An unimolar myristoylation of thymidine under controlled conditions furnished the 5'-O-(myristoyl)thymidine and it was further converted into four 3'-O-(acyl)-5'-O-(myristoyl)thymidine analogs. The chemical structures of the synthesized analogs were ascertained by analyzing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial tests along with PASS, prediction indicated expectant antibacterial functionality of these thymidine esters compared to the antifungal activities. In support of this observation, their molecular docking studies have been performed against lanosterol 14α-demethylase (CYP51A1) and Aspergillus flavus (1R51) and significant binding affinities and non-bonding interactions were observed. The stability of the protein-ligand complexes was monitored by a 100 ns MD simulation and found the stable conformation and binding mode in a stimulating environment of thymidine esters. Pharmacokinetic predictions were studied to assess their ADMET properties and showed promising results in silico. SAR investigation indicated that acyl chains, lauroyl (C-12) and myristoyl (C-14), combined with deoxyribose, were most effective against the tested bacterial and fungal pathogens. The POM analyses provide the structural features responsible for their combined antibacterial/antifungal activity and provide guidelines for further modifications, with the aim of improving each activity and selectivity of designed drugs targeting potentially drug-resistant microorganisms. It also opens avenues for the development of newer antimicrobial agents targeting bacterial and fungal pathogens.


A novel series of 5´-O-(myristoyl)thymidine derivatives were synthesized and characterized by FTIR, 1H-NMR, 2D-NMR, 13C-NMR, mass and physicochemical studies.In vitro antimicrobial susceptibility revealed that alkyl chain and aromatic substituents can improve the antimicrobial efficacy of the thymidine structure which was also supported by PASS enumeration.Molecular docking study against lanosterol 14α-demethylase (CYP51A1) and Aspergillus flavus (1R51) exhibited a promising binding score and interaction in the catalytic active site.A 100ns MD simulation revealed the stable conformation and binding pattern in a stimulating environment of thymidine derivatives.ADMET analysis revealed that most of the compounds are non-toxic and most of them have an inhibitory property to the CYP1A2 and CYP3A4In silico and POM analyses provide substantial ideas about the structural features responsible for their combined antibacterial/antifungal agents and provide guidelines for further modifications.


Assuntos
Anti-Infecciosos , Antifúngicos , Antifúngicos/química , Simulação de Acoplamento Molecular , Antibacterianos/química , Bactérias , Ésteres/química , Timidina/farmacologia , Estrutura Molecular , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
12.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175179

RESUMO

In the present study, we investigated the antiviral activities of 17 flavonoids as natural products. These derivatives were evaluated for their in vitro antiviral activities against HIV and SARS-CoV-2. Their antiviral activity was evaluated for the first time based on POM (Petra/Osiris/Molispiration) theory and docking analysis. POM calculation was used to analyze the atomic charge and geometric characteristics. The side effects, drug similarities, and drug scores were also assumed for the stable structure of each compound. These results correlated with the experimental values. The bioinformatics POM analyses of the relative antiviral activities of these derivatives are reported for the first time.


Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/química , Enzima de Conversão de Angiotensina 2 , Farmacóforo , Flavonoides/farmacologia , SARS-CoV-2 , Computadores , Simulação de Acoplamento Molecular
13.
Molecules ; 28(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985587

RESUMO

Due to the uneven distribution of glycosidase enzyme expression across bacteria and fungi, glycoside derivatives of antimicrobial compounds provide prospective and promising antimicrobial materials. Therefore, herein, we report the synthesis and characterization of six novel methyl 4,6-O-benzylidene-α-d-glucopyranoside (MBG) derivatives (2-7). The structures were ascertained using spectroscopic techniques and elemental analyses. Antimicrobial tests (zone of inhibition, MIC and MBC) were carried out to determine their ability to inhibit the growth of different Gram-positive, Gram-negative bacteria and fungi. The highest antibacterial activity was recorded with compounds 4, 5, 6 and 7. The compounds with the most significant antifungal efficacy were 4, 5, 6 and 7. Based on the prediction of activity spectra for substances (PASS), compounds 4 and 7 have promising antimicrobial capacity. Molecular docking studies focused on fungal and bacterial proteins where derivatives 3 and 6 exhibited strong binding affinities. The molecular dynamics study revealed that the complexes formed by these derivatives with the proteins L,D-transpeptidase Ykud and endoglucanase from Aspergillus niger remained stable, both over time and in physiological conditions. Structure-activity relationships, including in vitro and in silico results, revealed that the acyl chains [lauroyl-(CH3(CH2)10CO-), cinnamoyl-(C6H5CH=CHCO-)], in combination with sugar, were found to have the most potential against human and fungal pathogens. Synthetic, antimicrobial and pharmacokinetic studies revealed that MBG derivatives have good potential for antimicrobial activity, developing a therapeutic target for bacteria and fungi. Furthermore, the Petra/Osiris/Molinspiration (POM) study clearly indicated the presence of an important (O1δ-----O2δ-) antifungal pharmacophore site. This site can also be explored as a potential antiviral moiety.


Assuntos
Anti-Infecciosos , Antifúngicos , Humanos , Antifúngicos/química , Estrutura Molecular , Simulação de Acoplamento Molecular , Farmacóforo , Compostos de Benzilideno , Anti-Infecciosos/química , Relação Estrutura-Atividade , Antibacterianos/química , Bactérias , Testes de Sensibilidade Microbiana
14.
J Biomol Struct Dyn ; 41(6): 2260-2273, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075979

RESUMO

An array of computational approaches DFT/QSAR/POM methods has been used for a better understanding of drug properties regarding 13 inhibitor derivatives containing either P2 cyclopentane P1 carboxylic acid moiety (1-9) or a P1 cyclopropyl acyl sulfonamide (10-13). To further recognize binding interactions and their activity trends, molecular docking studies were carried out with the use of HCV, which can be used to accurately predict the interactions of ligands with the receptor. The QSAR models are developed through the use of Multiple Linear Regression (MLR) together with Principal Component Analysis (PCA) methods. The statistical results indicate the multiple correlation coefficient R2 = 0.840, which shows favorable estimation stability, as well as showing a significant correlation between the HCV NS3 protease of the studied compounds and their electron-accepting ability. The POM analysis of the Physico-chemical properties of compounds 1-13, shows that they are bearing (O1, O2) and/or (O1, O2, O3) antiviral pockets, whereby all oxygen atoms are Osp2 and bearing negative charges. Similar to the reference ligand (F9K), the most active compound 10 was bound deeply into the binding cavity of NS3 protease making interactions with the residues Gly137, His57, Ala157, and His528. The anti-hepatitis pharmacophore site is similar to the anti-HIV pharmacophore site.Communicated by Ramaswamy H. Sarma.


Assuntos
Antivirais , Hepatite C , Humanos , Antivirais/química , Peptídeo Hidrolases , Simulação de Acoplamento Molecular , Farmacóforo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Proteínas não Estruturais Virais/química , Endopeptidases , Hepacivirus/química
15.
J Biomol Struct Dyn ; 41(14): 6695-6708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35968554

RESUMO

Since Schiff base derivatives have a wide range of biological activities, novel Schiff base derivatives were designed and synthesized in satisfactory yields. 1H NMR, 13C NMR, IR, mass and elemental analysis were used to provide a complete structural characterization of the new synthesized Schiff bases (3-6). The antiproliferative activity properties of compounds were tested against two human cancer cell lines including breast (MDA-MB-231) and colon (DLD-1). The compounds overall did not show high cytotoxic activity against both cancer cell lines compared to the positive control drug cisplatin. The synthesized Schiff base compounds were further screened for their in vitro antimicrobial activities against five bacterial strains (Escherichia coli (ATTC 25922), Salmonella thyphimurium (ATTC 14028), Staphylococcus aureus (ATCC 25923), Bacillus subtilis (ATCC 6633), Bacillus cereus (ATCC 11778)) and two fungal strains (Candida albicans (ATCC 10231) and Candida glabrata (ATCC 90030)) using broth micro dilution techniques. The mode of action for the antimicrobial effect in the experimental part was explored through molecular docking. The stability of target-ligand complexes obtained from the docking were assessed through molecular dynamics simulation. The binding affinity of the compounds toward the target protein were also investigated using MMPBSA. Furthermore, electrochemical properties of some compounds was analyzed by DFT calculations. By using POM theory, it becomes more easy to control the bioactivity of drugs. Here, how the physicochemical properties play a crucial role in the orientation of their bioactivity was demonstrated.Communicated by Ramaswamy H. Sarma.

16.
PLoS One ; 17(11): e0273256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36441684

RESUMO

The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 is one of the optimum targets for antiviral drug design and development. The hydroxyl groups of cytidine structures were modified with different aliphatic and aromatic groups to obtain 5´-O-acyl and 2´,3´-di-O-acyl derivatives, and then, these derivatives were employed in molecular modeling, antiviral prediction, molecular docking, molecular dynamics, pharmacological and POM studies. Density functional theory (DFT) at the B3LYP/6-31G++ level analyzed biochemical behavior and molecular electrostatic potential (MESP) of the modified cytidine derivatives. The antiviral parameters of the mutated derivatives revealed promising drug properties compared with those of standard antiviral drugs. Molecular docking has determined binding affinities and interactions between the cytidine derivatives and SARS-CoV-2 RdRp. The modified derivatives strongly interacted with prime Pro620 and Lys621 residues. The binding conformation and interactions stability were investigated by 200 ns of molecular dynamics simulations and predicted the compounds to firmly dock inside the RdRp binding pocket. Interestingly, the binding residues of the derivatives were revealed in high equilibrium showing an enhanced binding affinity for the molecules. Intermolecular interactions are dominated by both Van der Waals and electrostatic energies. Finally, the pharmacokinetic characterization of the optimized inhibitors confirmed the safety of derivatives due to their improved kinetic properties. The selected cytidine derivatives can be suggested as potential inhibitors against SARS-CoV-2. The POM Theory supports the hypothesis above by confirming the existence of an antiviral (Oδ--O'δ-) pharmacophore site of Hits.


Assuntos
Tratamento Farmacológico da COVID-19 , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Citidina/farmacologia , Receptores de Droga , Antivirais/farmacologia , RNA Polimerase Dependente de RNA
17.
Cureus ; 14(6): e26266, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35911321

RESUMO

Vitamin D deficiency has been associated with the risk for immune-mediated inflammatory reactions in various respiratory infections. Our study investigated the association between vitamin D deficiency and coronavirus disease 2019 (COVID-19) patients' outcomes. We included 545 patients who were admitted to a tertiary center in Jeddah, Saudi Arabia from March 2020 to July 2021 with a vitamin D serum test result at the time of infection or prior to disease onset. The data were extracted retrospectively using a data collection sheet. Our primary outcomes were intensive care unit (ICU) admission and in-hospital mortality. The cut-off values for vitamin D were <25, 25-49, and 50-250 for deficient, suboptimal, and optimal levels respectively. Our result revealed that there is no association between vitamin D serum levels deficiency and ICU admission (OR=1.08, p=0.75) or in-hospital mortality (OR=1.74, p=0.97). ICU admission and in-hospital mortality percentages in patients with vitamin D deficiency were 14.1% and 6.4%, respectively. In comparison, percentages for patients with optimal levels were 16.67% and 6.15% for ICU admission and in-hospital mortality, respectively. Smoking was not associated with ICU admission (p=0.05) or in-hospital mortality (p=0.38). Our study does not support a relationship between vitamin D deficiency and COVID-19 patients' outcomes. Future studies should be directed toward conducting randomized clinical trials to determine whether vitamin D has an effective role in reducing COVID-19 severity.

18.
J Mol Struct ; 1267: 133605, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35782312

RESUMO

The discovery and development of new potent antimicrobial and antioxidant agents is an essential lever to protect living beings against pathogenic microorganisms and free radicals. In this regard, new functionalized pyrazoles have been synthesized using a simple and accessible approach. The synthesized aminobenzoylpyrazoles 3a-h and pyrazole-sulfonamides 4a-g were obtained in good yields and were evaluated in vitro for their antimicrobial and antioxidant activities. The structures of the synthesized compounds were determined using IR, NMR, and mass spectrometry. The structure of the compound 4b was further confirmed by single crystal X-ray diffraction. The results of the in vitro screening show that the synthesized pyrazoles 3 and 4 exhibit a promising antimicrobial and antioxidant activities. Among the tested compounds, pyrazoles 3a, 3f, 4e, 4f, and 4g have exhibited remarkable antimicrobial activity against some microorganisms. In addition, compounds 3a, 3c, 3e, 4a, 4d, 4f, and 4g have shown a significant antioxidant activity in comparison with the standard butylhydroxytoluene (BHT). Hence, compounds 3a, 4f, and 4g represent interesting dual acting antimicrobial and antioxidant agents. In fact, pyrazole derivatives bearing sulfonamide moiety (4a-g) have displayed an important antimicrobial activity compared to pyrazoles 3a-h, this finding could be attributed to the synergistic effect of the pyrazole and sulfonamide pharmacophores. Furthermore, Molecular docking results revealed a good interaction of the synthesized compounds with the target proteins and provided important information about their interaction modes with the target enzyme. The results of the POM bioinformatics investigations (Petra, Osiris, Molinspiration) show that the studied heterocycles present a very good non toxicity profile, an excellent bioavailability, and pharmacokinetics. Finally, an antiviral pharmacophore (O δ-, O δ-) was evaluated in the POM investigations and deserves all our attention to be tested against Covid-19 and its Omicron and Delta mutants.

19.
Life (Basel) ; 12(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35888017

RESUMO

Despite the challenging conditions in the pre-Saharan areas of Algeria, such as weak plant cover and a harsh climate, beekeeping is being developed and spread. In the present work, honey samples collected from ten locations in the El Oued region were examined during the spring of 2021. A melissopalynological analysis was carried out, followed by a floristic investigation. The 10 honey samples were also investigated for their physicochemical properties and antioxidant and antibacterial activity against five strains: Escherichia coli, Staphylococcus aureus, Bacillus subtilus, Listeria innocua, and Micrococcus luteus. The floristic analysis found 65 species belonging to 33 botanical families, with a dominance of the Asteraceae family accounting for 18.461% of the total. The melissopalynological study revealed only one monofloral honey (Ziziphus lotus), whereas the nine others were multi-floral. The honey's color changed from light to dark amber, and most tested honey was of high quality, fulfilling international criteria. The total phenol and flavonoid contents varied considerably amongst the various honey samples. Furthermore, LC-MS-MS phenolic profile analysis identified the presence of 20 chemicals, of which only three phenols were found in all honey types. Antioxidant capacity analyzed with FRAP test and antiradical activities against DPPH differed from one honey sample to another. Moreover, a significant correlation was recorded between the antioxidant activity, honey's color, polyphenol, and flavonoid contents. The S. aureus strain was the most sensitive regarding honey antibacterial activity, while M. luteus and B. subtilis strains were only moderately sensitive.

20.
Nucleosides Nucleotides Nucleic Acids ; 41(10): 1036-1083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35797068

RESUMO

Because of their superior antibacterial and pharmacokinetic capabilities, many nucleoside-based esters show potential against microorganisms, and may be used as pharmacological agents to address multidrug-resistant pathogenic problems. In this study, several aliphatic and aromatic groups were inserted to synthesize various 5'-O-decanoyluridine (2-5) and 5'-O-lauroyluridine derivatives (6-7) for antimicrobial, in silico computational, pharmacokinetic and POM (Petra/Osiris/Molinspiration). The chemical structures of the synthesized uridine derivatives were confirmed by physicochemical, elemental, and spectroscopic analyses. In vitro antimicrobial screening against five bacteria and two fungi, as well as the prediction of substance activity spectra (PASS), revealed that these uridine derivatives have promising antifungal properties when compared to the antibacterial activities. Density functional theory (DFT) was used to calculate the thermodynamic and physicochemical properties. Molecular docking was conducted against lanosterol 14a-demethylase CYP51A1 (3JUV) and Aspergillus flavus (1R4U) and revealed binding affinities and non-covalent interactions with the target. Then, a 150 ns molecular dynamic simulation was performed to confirm the behavior of the complex structure formed by microbial protein under in silico physiological conditions to examine its stability over time, which revealed a stable conformation and binding pattern in a stimulating environment of uridine derivatives. The acyl chain {CH3(CH2)9CO-} and {CH3(CH2)10CO-} in conjunction with sugar, was determined to have the most potent activity against bacterial and fungal pathogens in a structure-activity relationships (SAR) investigation. POM analyses were conducted with the presence of an antifungal (O δ- -- O' δ-) pharmacophore site. Overall, the present study might be useful for the development of uridine-based novel multidrug-resistant antimicrobial.


Novel uridine derivatives were designed and synthesized. The chemical structures and purity of these new uridine derivatives were confirmed by usual spectroscopic techniques.In vitro antimicrobial activity and SAR study was investigated. The incorporation of various aliphatic and aromatic groups in uridine structure significantly increased their biological activity.PASS prediction analysis indicated that the compounds were less potent as anti-carcinogenic agents (0.31 < Pa < 0.52) than as antimicrobial agents.Molecular docking analysis showed that the novel uridine derivatives 2, 5 and 6 may possess excellent effectiveness for lanosterol 14a-demethylase CYP51A1 (3JUV) and Aspergillus flavus (1R4U).The stability of the docked complex was confirmed by performing molecular dynamics along with an estimation of MMPB/GBSA binding free energy which ensured that complex of derivatives 2, 5 and 6 were reported in improved dynamics stability as revealed by their uniform RMSD and RMSF profiles.In silico ADMET calculations predicted improved pharmacokinetic properties of all uridine derivatives.The POM analysis showed the presence of an antifungal (O δ− --- O' δ−) pharmacophore site.


Assuntos
Anti-Infecciosos , Simulação de Dinâmica Molecular , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Bactérias , Lanosterol , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Nucleosídeos/farmacologia , Relação Estrutura-Atividade , Açúcares , Uridina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA